Fx Debugger User Guide

AR
abs&it
L [[
development tools and languages
2781 Bond Street
Rochester Hills, MI 48309
U.S.A.
Tel: (248) 853-0095
Fax: (248) 853-0108

All rights reserved. No part of this publication may be reproduced or used in any form by any means, without the prior
written permission of Absoft Corporation.

THE INFORMATION CONTAINED IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE AND
RELIABLE. HOWEVER, ABSOFT CORPORATION MAKES NO REPRESENTATION OF WARRANTIES
WITH RESPECT TO THE PROGRAM MATERIAL DESCRIBED HEREIN AND SPECIFICALLY DIS-
CLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. FURTHER, ABSOFT RESERVES THE RIGHT TO REVISE THE PROGRAM MATERIAL AND
MAKE CHANGES THEREIN FROM TIME TO TIME WITHOUT OBLIGATION TO NOTIFY THE PUR-
CHASER OF THE REVISION OR CHANGES. IN NO EVENT SHALL ABSOFT BE LIABLE FOR ANY
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
PURCHASER'S USE OF THE PROGRAM MATERIAL.

U.S. GOVERNMENT RESTRICTED RIGHTS — The software and documentation are provided with RE-
STRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. The
contractor is Absoft Corporation, 2781 Bond Street, Rochester Hills, Michigan 48309.

ABSOFT CORPORATION AND ITS LICENSOR(S) MAKE NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE SOFTWARE. ABSOFT AND ITS
LICENSOR(S) DO NOT WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS
AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU.

IN NO EVENT WILL ABSOFT, ITS DIRECTORS, OFFICERS, EMPLOYEES OR LICENSOR(S) BE LIABLE TO
YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR
LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE
LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF ABSOFT HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSE-
QUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Absoft and

its licensor(s) liability to you for actual damages for any cause whatsoever, and regardless of the form of the action
(whether in contract, tort, (including negligence), product liability or otherwise), will be limited to $50.

Absoft, the Absoft logo, and Fx are trademarks of Absoft Corporation.

UNIX is a registered trademark.

CF90 is a trademark of Cray Research, Inc.

OSF/Moatif is a trademark of the Open Software Foundation.

All other brand or product names are trademarks of their respective holders.

Copyright © 1991-1999 Absoft Corporation and its licensor(s).
All Rights Reserved
Printed and manufactured in the United States of America 60-051799

Table of Contents [

CHAPTER ONE INTRODUCTION ..ottt e e e e e e eana e ees 1
F N oo 11| PO OURROURRPI 1
ADOUL FX TNEEIFACES ...ttt an e b s n e ane e enre s 1
About the Examplesin thiSIManUal ..o 2
Conventionsused iNthISMaNUALooiiiiioii e nree 2
An Overview of the Chaptersin thiSManual ... 2
CHAPTER TWO TUTORIAL ettt e e e e e e e e e eanneeees 5
Launching the DEDUGOELcooiuieiiei ettt ae e st e st e e et e e e sbee e sabe e sbeeenbeeesaeeas 5
THE TULOIT Al PrOGIaM ... ettt ettt ettt b e a b e e st e e s be e e abe e e sabe e smbeesabeeebeeesbneesnbeens 5
Using the Load Program Di@lOg..........euieiiieiaie ettt st seee e sabe e sbe e sbe e s sneeesnneas 6
EXECULANIE FTE. ...t 6

1000 =3 o ST TP PP PR PP PPPPRRPRRPRN 7
SOUPCE PALN(S) -+ttt ettt ettt ettt ettt bt e s h bt e sa b e e st e e e bt e e saeeesmbeesnbeeebeeesneeesnnean 7
VAol (g 1o [DT {= v o SRR OUR 7
Loading the Program INto the DEDUGOEScoouuieiiieiiei ettt 7
SEttiNg @ BrEaKPOINTooiiiieei ettt ettt he e st e bt e et e eb e e she e e sabe e s be e e be e e ebee e eaeeas 8
Setting @ Breakpoint 0N @ LINE........coiiiiiii ettt e st e e e sbe e e sabe e sabe e s reeenees 8
Setting a Breakpoint Within @ PrOCEAUNE...........ocuii ittt 9

o G o DL Yol 0o = T o LTRSS 10
USING the RUN... IMENU TTEM ...ttt e et e e sbe e e sabe e s abe e e beeeees 10
Printing Values Of Vari@blES..........ooiiiiiiiii ettt e 10
EXECULING SINGIE SEALEIMENTS. ...ttt e st e st e e e sae e e sabe e sabe e e beeeees 11
Dereferencing a Pointer Variable............oo e 11
WaaLChiNG VariallES......co ettt e rbe e sae e sabe e s b e e eees 12
Removing WatChed VariallES.........oc.ue ittt 12
Changing VariallES.coo ittt et e et e e s be e e ebe e e saee e snreaans 13
] gTe R A (A DI o 18 o o = PRSPPI 13
CHAPTER THREE FXINTERFACE REFERENCEccoovviiiiiiiiceeeea, 15
USING the FX TNEEITACE.e it sbe e 15
FX M AN WINOOW ...ttt ettt sb bt bbb e b e s b e e ebe e sbe e sbe e sbeesb e e sbeenbeesneenneennes 16
IVLBNUS b et e st s e b b e 16
SEAEUS FTEI ... 16

PUSIN BULLONS ...ttt b b b e b e bt s b e s bt e s b e s b e nbe e s b e e nn e nneennnas 17
NaVigating THIrOUGN TEXE......ooiiiiiiii ittt sttt sae e e sabe e be e s be e e sbe e e saeeesareans 17
POPUD IMBNUS ...ttt etttk e e bt e e e s ab et e e e s bt e e e e bbe e e e aabbe e e e anbaeaeenbeeeeannneeans 17
Command ENtry TeXt FIEIO.eooieiee ettt saee s 17
IVLENUS ... bbb e st e s b e b e e r e 17

i Fx Reference M anual

REINIT. .. 1ottt b e s bt E e s bt E e e e b e e s b e e n R e e R e nb e e n R e e e R e e n R e e ar e e nreenreenreenreen 18
[0 o TP TP U PP R UPPPRPUPRPRRPRIN 19

[T L TP TP TP TR TP 19

1O T TP TP TP TP TR PR 19

O i T T T TP T TR TP TP UR TR 19

REBA. .. e E e R E e nE e e nr e e nr e e n b e e re e reenreenreen 20

[TP TR PP R UPP PR UPRPRRTRIN 20

1 TP PP PP UPP PR UPRPRRTRIN 20
(] TSP P PP PP UPP PR UPRPRRRIN 20
EXECULE IMBIU ...ttt ettt ettt e ettt e e e e ab et e e sk bt e e e e kb e e e e ambee e e s bbe e e e anbneeesanneeaeanns 21
L U T TP RP PR PP PR UPRPRRRIN 21
RUN L ¢ ettt h e E e b e s bR e E e e R e e e R e e R e e e R e e n R e nR e e R e e nReenReenbeenreenreenreenreen 22
WVBIK .« et E R E e Rt E e Rt Rt Rt r e r e re e ne e re e 22
EXEENal PrOCEAUIE.ttt ettt e b e sae e sabe e st e e e b e e enees 23
BIEBKIPOINT IMBNUL ...ttt ettt ettt ettt sab e e s e e et e e e ebe e e shbe e sabe e embe e e be e e aneeesmbeesnbeeenees 24
S OO OO P PP OPR PR 24
LOCAHION TEXE FIEIA ...ttt ettt e et e e e sbe e e snee e sabeeans 24
Associate Commands TEXE FIEToooueiiiiee e 24

SKIP COUNE TEXE FTEI ...ttt ettt e e be e eaee s 25

(D= [(= T TP PP PP UPP PR UPRPRRPRIN 25
(D= [(N | T TP PSP P R UPP PR UPRPRRPRIN 25

[TP PR UPPPRPUPRPRRTRIN 25
IMIONITOIS IMBINUL ...ttt sttt ettt bt e e s ab e e st e e et e e e b et e shbe e sabeesmbeeabe e e abeeesmbeesmbeeennes 26
S OO SP RO PP PP 26
Variable TEXE FIEIA ...ttt et ae e s be e be e e 27
ConditioN OPLION IMENUcoouiiiiee ettt ettt et sbe e saee e sabe e sbe e e sbeeesaeeas 27

A= N S I (1= Lo PSRRI 27
REIMOVE. ... <.tttk et e e st e e e e ek be e e e sk bt e e e aabbe e e e aabe e e e abbe e e e anbneeesanreeaeann 28

[TSP PR PRP PP PR UPRPRRTRIN 28
L©0 01011010 o FU TP OU PRSPPI 29

S = o 01 (o T PP PTPTR P 29

S (= 01O Y U PP PTPTR ORI 29

T 0o (o I = o g L(o FO TSP 29
INSEFUCTION SEEP OVE ...ttt sttt a e e ab e e st e e st e e e be e e ebe e e sabe e smbeeenbeeenees 29

(DKo o YA 1Y = o LU SRR 30
=TT o] =PSRN 30

L 8 [(= €T UPRPR 31

Y1 100 YO UT PP OUPPRTROTPRRN 31
AAAresS TEXE FIEIA ...ttt e b e sae e sabe e s abe e e beeeees 32
FOrmMat OPtiON IMBNU. ...ttt ettt st e bt e e sbe e e sae e e sate e s abe e e be e e abeeesnbeesnbeeans 32

SIZE OPLION MEINU ...ttt ettt sh et sa e et e e st e e e sbe e e sabe e sabeesabeeebeeesneeas 32
COUNE TEXE FIEIA ..ottt rb e e sate e sabe e sbe e e bee e sneeas 32
o U o/ U PR TP PUP PP 32
IO SEBLUS. ...ttt ettt ettt ettt e ettt e b e e e she e e sabe e s mb e e e be e e be e e eaee e rabe e enbeennreeennes 33
ASCH TADIE ...t b e e b e r e ne e ne e 33

L0 o1 Te 10 1Y/ 1= 01U ST PPR 33
EXPIrESSION LANQUABOE. ... ceeveeeieiieiiieesteeateeestee e stee e sate e st e s be e e sbee e shee e sabe e smbeesabeeaabeeesaeeesabeesnbeasnreeannes 34
CASE SENSITIVITY .ttt ettt ettt ettt ettt ettt sttt e bt e e sh e e e s hbe e sabe e eabe e e abe e e sbee e sabeesabeeebeeeaneeesnaeesnreans 34

[(=T TNV = 01U RSP 34
AULOMELIC HEIP FIEIA. ...ttt bbbt b e 35
USING the HEIP WINOOWeiieiieee ettt ettt e b e e sae e e s abe e st e e e be e e e 35

(O 0T o] oS TP RPRURRPRI 36
ON COMIMEBINGS. ... ettt ettt etee e sabe e st e e s be e e be e e eaeeeeabeeaabeeaabeeeabeeeasbeeaabeesmbeeeabeeeabaeesnneesnbeans 36

(O Y= £ o o USRI 36

POPUD IMTBNUS......ceee ettt ettt e e ekttt e e s ket e e e et ee e e ek be e e e abbe e e e ambeeeeaanbeeeeanbeeeesanreeanann 36

Table of Contents i

SOUICE PaNE POPUD IMENU ...ttt e st e e e st e e e e s bne e e s anbee e e anneeens 36
TOQGIE LINEBIEAKeeeiiiiieie ettt sttt h e st e e st e e be e e sae e e snbe e s mbeeeees 36
CONEINUE TO LMttt e e ean e ne e e ne s 36
BIEAK 1N ..ot bbbt R e h R nh e b nan s 37
VIBIW COOB ...ttt ettt ettt ettt b et b e b e s b e e s bt e s b e e s bt e s Re e sR e e s b e e abeesbeenbeenbeenbeenreenreenreen 37
L 1 1 ST PP T TP RPRT PR 37
L 11 ST TP P RO PPR PP 37
L AT o o OO PO P P PRPT PR PPPPRRPRN 37
J AT o OO U PP PSP PRPPPPPRRPRN 37
L0170 LT TR 37
FFOTMIBLE ...t e st r e ae e 38

OULPUL PaN@ POPUD IMBNU ...ttt ettt ettt e bt e e et e e e e s ab e e e e s b be e e s enbe e e e anneeans 38
L 1 | ST P O T PP OPROTR 38
L 1S TP P PSP OU PP PP 38
L AT o o TP U PP PSP PRPPRPURRPRN 38
L AT o TP TP U PP PSP PRPPPPPRRPRN 38
L0170 Lo LT U URTUPR 39
FFOTMIBLE ... et e e ae e 39
BT8R, ...ttt 39

ComMMAN PUSH BULTONS.........eeiiiiiiiiieii e ne e 39

RS = o1 [0] (o T TP OO PO PP PP 39

S = 01O Y TP U PP OPP PRI 39

1600 31 1] 01U TP PP UPP PP PRRPPRURPPRN 39

L LU TP P RPN 40

RESEAIT ... ettt E R Rt Rt Rt b E e Ee e re e re e re e nne s 40

S =l I = o TP PR PRPUPPPRRPPRURPPRN 40

TOOGIE SOUICE. ...ttt ettt ettt ettt ettt b et e h e e e bt e st e e ettt e ehee e sabe e s abe e e abe e e bee e eabeesmbeesnbeeebeeesnneas 40

SNOW CUITENT ...t b e b e e bt s b e e s b e e sb e e s b e e sr e e s beesbeenbeenreenreenreens 40

Command ENtry TEXE FIEIA ..ottt bbb sab e e b e e 40
Using the Command ENtry Text FIEId.........cooiiiiii e 41
CHAPTER FOUR RUNNING FX ..ot 43
Preparing Your Program FOr DeDUGQING........coueiiiiiiiiii ettt 43
LIS 1O o 1 o o TP TOTRR 43
Starting an FX DebUQGQING SESSION.uiiiiiiiiitariete ittt e rtee bt e e sbe e seeeessbeesbeesbeeaabeeesaeeesaseesnbeesreeenees 44

Loading a Program fOr DEDUGQING ueeireraieiaitieerieesieeaieeestee e saee e sebe e sbeesbe e sbe e e saee e saneesabeesbeeeees 44
Executabl @ File TeXt FIEI.......coioieeiieieee et 44
COrE@ e TEXE FIEIU ..ot n e e 45
SOUrce Path(s) TeXt FIEIcoiiieii et ae e e saee s 45
WOrking Dir€CtOry TEXE FIEIeee et 45
USING the SElECLION DIl0OGS. eeitiiiiii ettt sae et e e s be e e sbe e e saeeesarean 45

Executing Fx Commands DUring INitialiZationcooceiiiioiioie e 45

F N o o0 {1 ¢ TR RRPTR 45
A SAMPIE FXINIT T ettt et e b e 46

Restarting A DeEDUGOING SESSIONooiuuiiiiiieiii ettt e st e e sbe e e saee e sabe e snbeeeees 46

The REINIT... MENUITEIM ..o b b ae e b e b e nnees 46

Debugging With COr@ FIlES.........ii et b et e sbe e e 47

USING COrB FIES. ..ttt h et be e e bt e e be e e ebee e sabe e sabeesnbeeenees 47

v Fx Reference M anual

EXAMINING SOUFCE COOE........eiiiiiitii ettt ettt ettt ettt te e ae e e s abe e sabe e e be e e sbee e sabeesmbeesnbesabeeesnneas 48
Viewing Program SOUFCE FITESi ittt sb et et e e be e saee s 48
VIBWING ONEN FTES ...ttt sb et s ab e et e st e e be e snee s 49
VIBWING PrOCEOUIES......cc ittt ettt ettt ettt ettt eebe e e saee e sabe e s abe e eabe e e abee e sabeesabeeenbeeabeeesanaas 49
VIGWING EXECULION SEBLUS.......eiiteieieieeieteeitieetee ettt ettt e st e sbe e saee e sabe e sbe e eabe e e sbee e sabeesabeeanbeeabeeesneeas 49

Recreating a DebUQQING SESSIONcciuuiiiiii ettt ettt ettt et e e e sbee e sabe e sabeesbeeanbeeesneeas 49
USING thE LOG SEIECHION.ceieiieieiee ettt ettt sttt et e e sae e e st e st e e et e e e saee e sabe e sabeeenees 50
USING thE REA TTOIM ...ttt b et s ht et e e st e e e be e e sae e e sabe e sabeeenees 50

CHAPTER FIVE EXECUTING PROGRAMS IN FX..ouiiiiiiiiiieeieeeeee e 51

EXECULING SINGIE SLALEMENTS.coiiiii ittt ettt e st et e e sb e e e sabe e s abe e sbe e e beeesnneas 51
LILLEES (= ol g1 (o] =10 11 e o IR TUURRUSRRN 51
THE SEED OVEN BULLON ...ttt ettt ettt sttt et e b e e e saee e sabe e sabeeebeeerbeeesnaeesnreans 51
RetUrning from SUBIOULINESooiiie et b e sae et e be e e 52

USING BIEAKPOINTS. ...ttt ettt ettt e s be e e sbe e e saee e sabe e sabe e e abe e e abeeesabeesmbeeenbeeabeeesnneas 52
Using the Source Pane Popup Menu to Set Breakpoints...........ooiveiiieianeieiiee e 52

Setting a Breakpoint 0N @ SOUMCE LINEooiiiiiiiieiie ettt ettt ettt saee s saae e sane e 52
Setting a Breakpoint in @ PrOCRAUNE.........c.uii ittt 53
Setting a Breakpoint with the Breakpoint MENUooiiiiiiiiiiii e e 53
LOCALTION TEXE FIEIO. ...ttt sr e sr e sreenne e 54
ASSOCIAEE TEXE FIEI ... e 55
SKID COUNES ...ttt ettt ettt ettt ettt a et e sttt e be e e eh e e e ehbe e s abe e eabe e e abe e e ebbe e smbeesmbeeeabeeeanaeesaneesnbeans 55
LiStiNG BrEaKPOINTS.ciitiiiieit ettt ettt ab et e e st e e e sb e e e sabe e sabeesabeeebeeesaeeesnbeesnbeeennes 56
REMOVING BIrEBKPOINTSeeieeie ettt ettt ettt et be e sat e e sabe e s be e e be e e aaeeesnbeesabeeenees 56

o G o DL Vol 0o =T o[TSRS 56
USING the RUN... IMENU TTEM.....ceii ettt sae et e st e b e e e sae e e sabe e s beeenes 57
USING the CONLINUE BULLONooeiiiiii ettt ettt ettt e e sae e e smbe e s reeeees 57

ANIMating Program EXECULIONciiiiiiiie ettt et e sbe et e e s be e e saee e sneeesnreaan 57
S = VAT 1 DT oo RS R U PPR 58
SEOP WAIK DIHBIOQ ... eetee ettt ettt ettt sttt e bt b et ae e e s et e e st e e e be e e abe e e sbbe e sabe e smbeesnbeeennes 58

Calling Program ProCaOUIESoi ittt ettt ettt sbe e saee e sbe e st e e st ae e sase e snbeesnbeeeees 58
Using the External Procedure... MenU ITEm ...t 59
Setting Breakpoints in EXtErnal ProCEAUIEooiuii ittt 60

CHAPTER SIX WORKING WITH VARIABLES ..., 61

Displaying Program VariablES ...ttt sae et be e eaee s 61
The Print and Print* MenU ITEMSooiiiiieiie et sreenne e 61

Displaying Arrays, StructureS and UNIONS............ooiieiiiiriiee ittt e e 62
S L g To o0 7= £ OO PTRURRPRI 62
EVAlUBLING EXPIESSIONS.ueeieieiie ittt ettt ettt sttt e be e sbe e sabe e s abe e e be e e abee e ebeeesabeesnbeeanbeeanees 62
Watch and WatCh* IMENU TTEMS.......coiuiiiiiiiiiteert ettt sne e 63
THE SYMDOI BIOWSES ...ttt ettt ettt ettt e eae e e s et e e s e be e e be e e be e e aase e sateesmbeeenbeeeabeeeanaeesnreans 63
GlODEI SYMDOIS......coeee ettt ettt e raa e saae e nare e 64
LOCEI SYMDOIS ...ttt ettt e b e ra e b e b e b e e e 64
SEAEIC SYMBIOIS ...ttt ettt ettt e b e e e sbee e sabe e sabe e e be e e abeeesaaeesnreeans 64

SEting FOrMALS @GN0 SIZES......oo ittt b e sb e s be e st e e s be e e sbee e saaeesareeans 65

Table of Contents \Y;

M OITYING VAN TADIES.eeiiii ettt b et sae e st e e st e e e ebe e e eaee e sabe e snbeeenees 65
The Change... MENU TTEM ..ottt et e e b e e e s ab e e sabe e s be e e sbeeeaaeeas 65
Finding OVerwritten Variables. 65
USING Variall € MONITOIS.....cooeiiiiieeiie ettt ettt ra et esabe e st e e e be e e ebee e sabe e smbeesnbeeeees 66
REMOVING IMONITOIS......eeiiiii ittt ettt ettt e et e e sbe e sabe e s abe e sbe e e be e e abee e sabeesmbeeenbeeenees 67
(RS 1T a0 Y gL (o =TSR 67
CHAPTER SEVEN ASSEMBLY LANGUAGE DEBUGGING...........cccccvveeennnnn. 69
Using Fx Commands at the ASSEMBIY LEVELcoo i 69
Examining Assembly Language COOE.........ueiiieiaiiieiieeeiee ettt ettt saee e e b e be e e 69
RESUMING Program EXECULION.ueiiiiiiiii ettt ettt ettt seee s be e sbe e be e saee e sane e smbeeebeeeees 70
Setting Breakpoints at the ASsembly LEVEL...........oo e 70
Displaying and Changing REJISIENS.......cuiiiiiiiee ettt b e sae e e saae e beeeees 70
Displaying Program IMEIMONYoo ettt stee e tee e ste et sbe e s be e e sbee e saeeesabeesbeesabeeesaseesnbeesnreesnnes 70
Monitoring Registersand Memory LOCALIONS.cuiiiiiiaiiie ettt 71
CHAPTER EIGHT COMMAND ARGUMENTS......cooiiiiiieeeieeeeeev e 73
KoL o LU LTS S ol o] [T F PRSPPI 73
Fag ol Lol S iore) o 1 oo [T URP RO 74
(o] e L S wo o [Vo TSP 74
SPECITYING SYMDIOIS.....ece ettt bbbt sa e et e e s be e e be e e sbee e sabe e smbeeenbeeentes 74
SYMDOL INBIMIES...... ettt ettt ettt e bt e e s hbe e s st e e s be e e be e e eheeesabeesmbeeenbeeaabeeesnneesnbeans 74
FORTRAN SYMDOIS ...ttt r e b e ne e ne e n e s 75
FORTRAN DEEA TYPES ...c.veeteeteeiteesteesieesteesteesteesteesbeesteesbeesbeesbeesbeesbeesbeesbeesbeesbeesneesneesseesneesnnesnnas 75
FORTRAN Subroutings and FUNCLIONS.coiiiieeiiiiiesiee et 76
FORTRAN CoMMON BIOCKS ..ottt 76
FORTRAN Local Variables and Procedure ArgUMENTScoceeiiereriiieieeenieesieeesieeeseeeeseeeesneens 76
FORTRAN ATTaY INAEXING -..cetiiiieieiie ettt ettt ettt sbe e sabe e sbe e s be e e sbee e snteesareans 76
FORTRAN CharaCter SUDSIIINGSceeveieiuieeiieeitee ettt ettt et ste e seee e sabe e sbe s sbeessbeeesnseesnneeans 76

LGS 10100 LR UUPRURRRI 76

LOR DL = T Y o1 ST OO TP OUPPP PP 77

(O3 ¥ 0o (o0 L TP TP TP 77
CEXIEN VATADIES. ... e 77

C SALIC VAITANIES ...ttt n e e ne e ne s 77

C AULOMALIC VAITADIES. ...t 77

C Array Indexing and Pointer DereferenCing..........cooueeiiiiiieiie e 77

C Structure and UNion MEMDEIS.........ooiiiiiee s 78
SPECHTYING CONSLANTS ...ttt ettt ettt ab e e she e e sa b e e s abe e sabeeabe e e saeeesabeesmbeasnbeeenees 78
INEEOES CONSLANTS. ... eiiiee ittt ettt e ettt e ekt e e e e e bb e e e e s be e e e s aabe e e e abbe e e e aabee e e s ambeeaesnbeeesanbeeaesanneeananns 78
DECIMAl CONSIANES......ecteeteeiteeitee sttt b e bbb e sb e bt s b e sbe e sb e s be e sneenb e e sneenneennnas 79
BiINAIY CONSLANTS. ... teeetee ettt ettt et et e ettt e sbe e e shee e sabe e aabe e e be e e abeeesabeesabeeabeeeabeeesnsaesareans 79

OCLBI CONSLANTS. ...ttt stee sttt ettt h e b et a e a e sa e sae e s ae e sa e e e s e e e s beenneeaneenneenneeane s 79
HEXadECi Ml CONSLANTScveeiveeiteeitee ittt sttt sb et b e s b e sb e sbe e sn e e be e s e saeenneas 79
FlOAtiNG POINE CONSLANTS.....cooteiitii ettt ettt ettt et e e sabe e sabe e s be e e be e e ebee e sabeesmbeeenbeeenees 79
COMPIEX CONSLANES. ...ttt ettt rtee ettt ettt ettt e ettt e ebe e e sate e sabe e s be e e beeeaaeeesabeesabeeabeeaabeeesnseesnreans 80

Character String and C Character CONSLANTS.........cocueiiitiriiiie e riee ettt be e sbee e saeeesnneeans 80

Vi

Fx Reference M anual

SPECHTYING REOOISIEN S...e ettt b ettt e bt e e bt e e eb e e e sabe e sabe e eabe e e abee e aaeeesnbeesnbeeenees 81
EXPresSiON ML PrELAIION ..ottt ettt et e et e e e sbe e e sabe e sabe e enbeeabeeesnneas 81
CUurrent EXPreSSiON LANQUAOEooiveeiieritii ettt ettt ste et e sbee s sbee e saae e ssbeesabeasbeeasbeessbeeesssessnseesneesnses 81
Default EXPreSSiON LANQUAGE.cciteeatieaitieeaiieesteeasteeesteeesateesbeasbeeasbeeesaeeesabeasbeeasbeeesasessnsessnseesnses 81
SUPPOrted LangUagE OPEIaLOrS........ccueeiteriieearieeerteeasteesbeaasteeesbeeasaeeessbeesabeeabeeaabeeassseesasessasesssesases 8l
FORTRAN OPEIBLOIS........eeiiiiiieieitieeaeatiee e et e ettt e e abae e e s asbee e e s abbeeaeaabeeeeaaabeeeesasbeeesabseeesanreeeeanns 82

(ON 0o/ £ (0 £ TN PSP PO U TR PTPPTRP 82
FORTRAN INtrNSIC FUNCHIONSeotieitieitieiteest ettt sttt sr e sreesr e sr e sreenreenneen 82

A= U] o o €= o] USROS 82

A CArESS EXPIESSIONS.....ecteeiteeetee ettt e sabe e et ee e bt e e sttt e saeeesabeeabeeaabee e saee e aabeeeabeeeabe e e abeeesabeesmbeeanbeeaabeeesnneas 83
100< =0 (o W1 011< g o] = r= 1o o WU 83
CHAPTER NINE COMMAND REFERENCE.........ccoiiiiii e, 85
! EXecuting SySteM COMIMANGSueiiiiieiiiee e sieeetee ettt e ste e be e saee e saneesaneeaas 85
associate Executing commands at breakpointSooiveeiiiiiii e 86
break Satting DreakPOINTSooie e 87
change MOodifying VAriabIES.........oo i 88
close ClOSING FXWINAOWS ...ttt ettt ettt e e s be e e sbe e e snne s 89
continue ReSUMING Program EXECULIONeeeueiariiee e steeaieeesieeesiee e sebeesbeessbeeesaeeesaeeesnseeaas 90
Delete Removing all Breakpoints...........oooeiiiiie e 91
delete Removing specific DreakpoiNtS.cooei i 91
dump Displaying Program MEMOTYc.cueeeareeerieesieeaieeesreeesieeesbeesaeessreeesseeesseeesseesas 92
dynamic AULOMALING FX WINAOWSceiiiieieiee ettt ettt 93
external Executing procedureS OUt Of SEQUENCE.cciuuieiieeiiee et et siee st e et e e sine e 93
filestatus Displaying FORTRAN I/O unit information.............ccoeieieiiee e 94
go ReSUMING Program EXECULIONeieueiarieeeiiieeiteeateeesteeesteeesabeesbeessbeeesaeeesaeeesnneesas 95
help GEIING HEIP ..ttt sbe e saee s 96
I nstruction Sepping over assembly [anguage ProCeAUNES...........oueeiierireeerie e 96
instruction Executing SINGIE iNSLIUCTIONS.........uiiiiiiiiii ettt 97
keep Causing Fxwindows to remain ViSIDIE...........ooiiiiiiiii e 98
kill Terminating the CUrTeNnt Program..... ... eeeieee ettt e b e 98
list ascii Displaying ASCIH tahleooiiiiei e 99

list breakpoints

Displaying current BreakpointS..........oeiiiereiieeiiee e 99

Table of Contents vii

list control
list entries
list file

list globals
list locals
list monitors
list signal
list statics
log
monitor
next
output
previous
print

quit

read
registers
reinit
Return
run

scope
search
section
shift
signal

size

sleep

Displaying Fx control Variablescooiiiiiiiiiee e 99
Displaying entry point infOrMationcooceiireeenie e 100
Displaying @ny filEoo i 101
Displaying global symbol information ..o 101
Displaying local variable information ..o 102
Displaying CUrrent MONITOIS.ccoieieiiie e eieeeiee et sb e saee e sebe e see e e 103
Displaying current Signal StatUSceeeiieriiiieee e 103
Displaying static symbol information.............cccoeoeiiiiiiiee e 104
Whiting FX commandsto @ fil@........ooiiiiiiii e 105
Sopping execution when a variable changes. ... 106
SCrolling SOUrCE WINAOWSceeiiieiieeiiee ettt ettt e st e et saee e snee e 107
Displaying Program OUEPUL.ceieieeeiieeiieeesiee et sieesre e sree e saee e sebeeseeeeees 108
SCrolling SOUrCE WINAOWSceeiiieiieeiiee ettt ettt ettt saae e sneeean 109
Displaying programvariables...........oouie i 109
Ending @ debugging SESSIONccooeiiiiieiiieiiee ettt et sb e sae e 111
Reading Fx commands fromafile ...t 112
Displaying machine regiSters ... 113
Sitching Programsto AEDUG.........oover i 113
Returning from the current SUDroUtiNe...........cccooiiiiiii i 114
Sarting and restarting program EXECULIONcccooieeereeerieeriee e 114
Accessing variablesin reCursSive ProCeAUNES..........ocueiivererieeerieeerieesieesieeesieeesaeeas 115
Finding Stringsin SOUFCE WINCOWS.coiuiiiieiaiie ettt 116
DiSPlAYING AITAYS. ... eeeeieieeitee ettt ettt e st e e sb e e e sabe e sabe e snbeeeees 117
SCrolling SOUrCE WINAOWSceeiiieiieeiiee ettt ettt ettt saae e saeeeans 118
Controlling SIgNal ACHIONSccouieiieeiiee et 119
RESIZING FX WINCOWS. ..ottt ettt ettt et e e saae e b e e sbe e e 120
Delaying command EXECULTON...........ioiuiaieeiiee ettt see e see e 121

viii Fx Reference M anual

Step Stepping over procedure CallS...... ..o 121
step Executing SiNGIe SOUrCe SLALEMENEScoieiiiiee ettt 122
trace Displaying @ SLACK traCE........cciiii ittt 123
unmonitor REMOVING MONITOISciitiiiiiie ettt ettt e b sbe e sane s 123
unwatch Removing watCh variables.............coiiiii e 124
update Refreshing FX QiSPlay......coooeieiiee et 124
View Displaying assembly language COOE...........ooiuiriiiiiiii et 125
view Displaying SOUICE COUE........ceeiuiieiieiitee ettt ettt be e sae e sane s 126
walk Repeatedly executing FX COMMANGS..........cooiiiiiiiiiiii e 127
watch Observing program variables............coiueeiiiiii e 128
APPENDIX A THE FX CHARACTER INTERFACE ... 129
Starting the Character INTErFaCE..........oi i saee e 129
Preparing Your Program FOr DeDUQGINGceeiuiiiiiaiiee ettt 129
Starting an FX DebUQGQING SESSIONveiiieieitiieiieerteeetee et e siee e sibe e sbeeasbe e e sbee e sseeesabeesbeeasbeessaseasnneans 130
COMMEANA LINE SYNTAX ...ttt ettt ettt ettt e bt e e sbe e e sae e e sabe e sabe e e be e e sbbe e sabeesabeeebeeesaeeas 130
SaMPlE COMMEBNA LINES.......ooiiiiiiii ettt ettt sa et e bt e rb e e e sae e e sabe e sabeeebeeesaeeas 131
Warnings and Progress INFOrMELIONeiiieiiiiieiie ettt see e e saae e s esbe e e 131
SPECITYING @ COME FIE....c ettt e b sae e e sabe e st e e e be e e saee s 131
Specifying Multiple SOUrCE DIFECLOMES.......co.veiiiiieiiei ettt b e e e saee s 131
Interception of terminal INPUE/OULPULoiiiiiiiieie ettt e e s 132
Interception Of FORTRAN 1/0 gOLOS.......coitiiiiiietii ettt ettt ettt sbe e e e esneeeees 132
Debugging CurseS APPlICALIONS.eiiieieitii ettt ettt et e e sbe e saee e sbe e s be e e sbee e saeeesnbeaans 132
AIEring OPtioN DEFALITS........coiiiiiiii ettt e et e e sb e e e sate e snbe e sbeeenes 132
Character INterface TULOI Aloeiieiiei e e e 133
Character INterface WINGOWScoueiiiiiiiiiieieesiee ettt sne e 133
THE SOUICE WINUOW ...ttt ettt sttt r e b sr e sr e e sb e e sre e nreesreesreesreenreens 133

The ComMMEN WINGOWcoiuieiieiieiteeieesiee sttt sttt sr e sr e sr e sr e sr e e sreesreesreesreenreens 134

THE SEBEUS WINOOW. ...ttt ettt r e r e sr e s b e e sr e e sb e e nbeesbeesreesreesreenreens 134
DiSPIAY WINTOWS.......eieeieeieiee ettt ettt ettt ettt e et e e sbe e e sa e e s abe e e abe e e saeeesmbeesabeeebeeesnneas 134
SEING BrEaKPOINTS ...ttt ettt ettt e bt e she e e s st e e s abe e e be e e saee e sabe e sabeeebeeesaneas 134
EXECULING PrOQIaIMS.......ciitiiiitit ettt ettt et et he e e sab e e st e e e be e e sbe e e sabeesabeesnbeeaabeeesaseesnbeans 135
PrINtING Vari@lES ...ttt sttt e rb e e saee e s abe e s be e e sbe e e saee e nnrean 136
EXECULING SINGIE SEALEMENTS ... ettt ettt et sbe e e st e e s abe e s be e e sbe e e saeeesabeen 137
Dereferencing C Vari@hlESottt ettt e e e sbe e e saee e sabean 138
WaaLChiNg VariallES. ...ttt et e e sb e e saee e s e s be e e ees 139
Keeping Display WIiNAOWS ViSIDIE.........cooiiiii e 140
Making Display WindOWS DYNAMIC..........ueiiiiiaiiiaiiee e sieeesiee e siee et e st e sre e sase e snbessbeessaeeesaeeas 140
ReSIZING DiSPlay WINAOWSeoiiiiieiiie ettt ettt ettt e s saee e sabe e sbe e s beeesnee s 140
ClosiNg DiSplay WINOOWS.........ueiiieieieeeieie ettt ettt et e e sbee e saee e sabeesabeeebeeasbeeesnneas 141

Changing the Value of Variabl 5.ooui e 141

Table of Contents IX

Exiting from the Character INEITaCE.........ooiuii e 141
USING thE KEYDOAI Q... ettt sttt e et rbe e e sabe e sabe e st e e e rbee e sateesnbeens 141

USING FUNCHION KBSttt ettt ettt et et e ebt e e sa e e s abe e e be e e sbee e smbeesabeeenbeeeanneas 142
APPENDIX B FX CONTROL VARIABLES ... 143
APPENDIX C DEBUGGING OPTIMIZED CODE.......c.c.ccoiiiiiiiiiiieeeeeee 147
Why Optimized CodeiSa Problem..........co e e 147
Code Elimination OptimMiZationsS.uue ittt e sbe e be e seee e sabe e sbeeesaeeesaeeas 147
Memory and Register OPtiMIZALIONS.ccoiuiiiiiiaiiee ettt ettt be e sbe e sbee e saeeesareeans 148

Peephol@ OPLIMIZALIONcooiiiiiei ettt ettt sbe e e sate e sabe e st e e e sbee e sateesabeans 148

Chapter One

Introduction

When the state of the art user interface consisted of a card reader and line printer and the
majority of programs where written in assembly language for mainframe computers,
debugging programs involved long hours examining source listings and core dumps. Other
debugging techniques included inserting code to print the values of variables and trace the
flow of program execution, staring off into space, and blaming the hardware. As both
hardware and software technology progressed, the need for more sophisticated debugging
tools led to the devel opment of interactive assembly and source level debuggers.

About Fx

Although interactive debuggers have existed for a number of years, a surprising number of
programmers do not use them during program development. Many may have tried to use
one and found the experience so frustrating that they returned to more primitive
debugging techniques. Others, particularly FORTRAN and assembly language
programmers, may have found that available debuggers fail to provide adequate support
for their language of choice.

Absoft has created Fx to meet the needs of both the novice and experienced programmer.
Fx provides both standard debugging capahilities, such as breakpoints and variable display,
and includes advanced features like variable monitors and dynamic windows. FORTRAN
programmers will find that Fx supports their language, and assembly language users will
appreciate the support provided for machine language debugging.

Some people enjoy using a point and click graphical interface; others may find it a
distraction, or not have access to the necessary hardware. Fx provides interfaces to suit
both of these needs. When a graphics terminal is available, Fx alows you to take
advantage of a graphic interface and still retain the convenience of a command line. When
you are debugging on a character based terminal, Fx provides a command line interface
and provides windowing capabilities where possible.

About Fx I nterfaces

This manual has been structured to allow you to begin using the Fx graphical interface as
quickly as possible. The interface is based on the Open Software Foundation's
OSF/Motif™ user environment. You can begin debugging a smple program by entering
“xfx” and pressing the Return key. If you wish to use the Fx character interface, you
should refer to Appendix A. This appendix contains information on starting and stopping
Fx when using the character interface, as well as details on interacting with Fx when using
thisinterface.

Fx Reference M anual

2 I ntr oduction

About the Examplesin this M anual

All Fx interfaces support command line entry. You should keep in mind that there might
be more convenient ways to specify a given command. Although the examples in this
manua use the complete speling of each command, all commands can be entered by
specifying the minimum number of characters required to distinguish the command. For
example, the quit command can be abbreviated to g. When two commands begin with the
same sequence of characters, the one which is more commonly used will be executed. For
example, the step command can be abbreviated to s, while the search command can be
abbreviated to sea.

Conventions used in this M anual

There are afew typographic and syntactic conventions used throughout this manual for
clarity.
* The names of Fx menu items, commands and contral variables, as well
as Fx and compiler options, are shown in bold.

» Examples and sample command lines are shown in Couri er .
* {} bracesindicate that a syntactic item is optional.

* ..indicatesarepetition of a syntactic eement.

» [talicsare used for emphasis and argument substitution.

An Overview of the Chaptersin this Manual
e Chapter Two - Tutorial

Describes how to start a debugging session, load your program for source level
debugging, set breakpoints and quit the debugger.

* Chapter Three - Fx Interface Reference

Presents al the features of the Fx graphical interface, including menus, commands,
buttons and windows.

» Chapter Four - Running Fx

Describes how to prepare your program for debugging, how to use corefiles, different
methods of examining source code, and recreating a debugging session.

* Chapter Five - Executing Programsin Fx

Introduces information on executing programs within the debugger, including using
breakpoints, animating program execution and calling program procedures.

Fx Reference M anual

I ntroduction 3

Chapter Six - Working with Variables

Discusses how to display variables and arrays, modifying variables, and finding
overwritten variables.

Chapter Seven - Assembly L anguage Debugging

Provides details on using Fx to debug at the assembly language level. Topics include
how to examine disassembled code, execute single instructions, and display the
contents of registers and memory.

Chapter Eight - Command Arguments

Describes how to enter symbol names and constants as arguments to Fx commands.
Included are a list of supported data types and operators for both C and FORTRAN,
and the rules used when evaluating expressions.

Chapter Nine - Command Reference

Contains information on al Fx commands including each command's purpose,
arguments, and abbreviation. Notes and examples are provided where needed.

Appendix A - The Fx Character Interface

Introduces the Fx character interface, describes how to begin a debugging session with
the graphic interface, and how to manipulate character based windows and
interpretation of special keys.

Appendix B - Fx Control Variables

Presents a table of all the Fx control variables. Information on each variable includes
its name, purpose, default value, and the values that it may be assigned.

Appendix C - Debugging with Optimized Code

Provides details on using the Fx debugger when working with optimized code.

Fx Reference M anual

Chapter Two

Tutorial

If you have never used a source level debugger before, you may be surprised by how
useful a debugger can be in isolating problems in a program. This tutorial introduces the
basics of Fx and provides step-by-step instructions that cover the following topics:

» Launching the Debugger

Describes how to start a debugging session and introduces the basic features of the Fx
Debugger interface.

» Setting Breakpoints
Provides an introduction to using breakpoints to analyze sections of code.
» Executing Programs

Describes how to run a program under Fx and introduces different menu selections for
working with variables while executing the program.

* Quitting the Debugger

Describes how to exit from Fx.

L aunching the Debugger

This section discusses how to start Fx and load a program for a debugging session. It
describes how to specify the name of the program to debug, the name of a core file, and
the directories that contain the source code for the program.

The Tutorial Program

Thetutorial program, wr dent , counts the number of words, lines, and charactersin atext
file. It is used to demonstrate the basic features of the Fx Debugger.

Before launching Fx, the executable version of the tutorial program must be created in the
shdl usng the nake command. The tutorial source file and a makefile that builds the
tutorial program are included in the Fx Help Library. To get a copy of these files and
create the tutorial program, execute the following:

| To... | Do... |

Fx Reference M anual

6 Tutorial

Get a copy of the source file and
the makefile.

At the UNIX shell prompt, enter
ar -xv /usr/lib/Fxhelp.a

wrdent . ¢ Makefil e and pressthe
Return key.

Create the tutorial program.

Type nake at the shell prompt.

After compiling the tutorial program, the

Fx Debugger is launched from the shell prompt

to begin a debugging session:
To... Do...
Launch the debugger. Type xf x at the UNIX shdll
prompt and press the Return key.

Using the L oad Program Dialog

When the debugger is launched, the Load Program dialog will appear. At the bottom of
the dialog a Help button is available: click on this button to see information on the
features of the dialog. If, for some reason, you need to quit from the debugger at this

point, click the Exit button.

—| Load Prosran |

{Executable File... | [Core File... | [Source Path{s)...|

Executahle Fie:

Core File:

e e,

I FIOne

Source Paths(s):

I fhona/Fxtutorial

Working Directory:

I fhone Frtutorial

Lox]

Help

ety
m .E
F=T
=1

Figure 2-1
Load Program dialog

The four text fidds: Executable File,

Core File, Source Path(s), and Working

Directory, alow you to type in the names of the files and directories the debugger will

use.

Executable File

Fx Reference M anual

Tutorial 7

Thistext field names the program to be debugged. The name of tutorial program, wr dent ,
will be entered into thistext field.

CoreFile

This text field allows you to specify a core file. When an operating system creates a core
file of a program, Fx can use this file to easily determine the location in your code where
an error occurred. For the purpose of this tutorial, a core file will not be used.

Sour ce Path(s)

This text field lists the directories that contain the source files that were compiled to
produce the program you are debugging.

Working Directory

This field alows you to specify the directory that will be your program's current directory
while you are debugging with Fx.

L oading the Program I nto the Debugger

The tutorial program isloaded into the debugger by using the four text fields in the L oad
Program dialog. Since Fx has supplied suitable defaults for the source paths and working
directory fields, you only need to enter the name of the executablefile.

To... Do...
Specify the executablefile. Typew dcnt into the Executable
File text field.

Load the program for debugging. Click the OK button.

After the program is loaded, the source code is displayed in the main window, the Fx
Debugger window. This window is where you will spend much of your time, executing
commands necessary to debug your program.

Fx Reference M anual

8 Tutorial

- A==r- |
Ar Ewrcuie Bresiqont Mofiors Ghpizy i Hel

Flaswrdcrl.c Rinilomimm{&l Ertiry) Linec3s

amind st argodeer doegel 1)
L1

nt L7

Fiers thla_FLisr

Fusfe vatalag

FaranlFt L A
i G = Ul A fo fils pmificn, um st 1o W

thiz_fils Fils = ridinz
ke, pare 03
b sl b 1 Lady
e R T T T
b
alsy
i

tatala L
takals, Jine ourt = d0;
pIrala.star_pmes = d:
Latala,mime = “iLala®

SRHTHASETEESEREL SR MY
3
&
L

FardL = L3 & 4 argal 1=
L

| Far Conwa i | . |

Figure 2-2
Fx Debugger window

The Status Field is located under the Menu Bar; it shows where you are in your
program, the name of the source file, the program unit, and the line number.

Underneath the Status Field isthe Sour ce Pane, which shows the program's source code.
By pressing the arrows on the scroll bar, different sections of the source code can be
viewed. The Output Pane islocated under the Sour ce Pane and displays the output from
Fx commands (like printing the values of variables). It also has a scroll bar to view output.
This pane can be resized by using the small square, called a sash, at the top of the scroll
bar.

The Command Entry Field is available for invoking Fx commands without using the
menus. To invoke a command from this field, type in the command and press the Return
key. Located along the side of the Fx Debugger window are push buttons that invoke Fx
commands directly from the window.

Setting a Breakpoint

Breakpoints allow you to suspend execution of your program at a specific location. You
can set breakpoints on source lines, procedures and even individual machine instructions.
Before we execute the program, we need to set two breakpoints: one at a source line and
another inside a specific procedure.

Setting a Breakpoint on aLine

If you triple-click with the first mouse button on aline of source code or within aline, and
then press the third mouse button, the Sour ce Pane popup menu will appear. This menu
contains items for setting breakpoints, printing variables and viewing procedure code.

Fx Reference M anual

Tutorial 9

Toggle Line Break

Continue To Line

Break In
View Code

Prink

Prink *

Walch

Watch =

| Change..,

F avmat P

Figure 2-3
Source Pane popup menu

To sdect a menu item from this menu, hold down the third mouse button, drag the cursor
to the item, and then release the button. We will use the Toggle Line Break item to set a
breakpoint at line 40.

To... Do...

Select line 40 and invoke the Triple-click with the first mouse

Sour ce Pane popup menu. button on line 40.

Set the breakpoint. Hold down the third mouse button
to invoke the popup menu, then
choose Toggle Line Break.

Fx will mark the location of the breakpoint with the letter B in the Sour ce Pane. When
thislineis encountered during program execution, the program will stop.

Setting a Breakpoint within a Procedure

The Break In menu item in the Source Pane popup menu sets a breakpoint within a
procedure. The second breakpoint we will set isin the procedure Get Count s called from
line 63. This breakpoint will stop the program when Get Count s iscalled.

To... Do...

Select the procedure and invoke Sdlect Get Count s and hald the
the Sour ce Pane popup menu. third mouse button.

Set the breakpoint in Get Count s. Choose Break In.

Be careful: you must make sure that you select only the name of the procedure. Selecting
any other characterswill result in an error.

Now that the two breakpoints are set, the program can be executed to explore other
features of the debugger.

Fx Reference M anual

10 Tutorial

Executing Programs

The Fx Debugger can execute a program in different ways. The Run... menu item,
located in the Execute menu, starts program execution. This menu item invokes a dialog
which allows program arguments to be specified.

Execute

Eun...
Walk...

Extemal Procedure...

Figure 2-4
The Execute menu

Using the Run... Menu Item

To execute the w dent program, a file needs to be specified so the program can count
words, lines and characters. After choosing the Run... menu item, this file can be
specified as an argument in the Run Program dialog. For the tutorial, the number of lines,
words and charactersin thew dcnt . ¢ source file will be counted.

To... Do...
Execute thew dcnt program with | Choose the Run... menu item
the desired argument. from the Execute menu to invoke

the Run Program diaog.

Enter wr dent . ¢ inthe Program
Argument text field then click on
the Run button.

Thew dcnt program will execute to the breakpoint we set at line 40 in the source code.

Printing Values of Variables

The values of program variables can be tracked during program execution and used as an
aid to debugging a program. The Print menu item in the Sour ce Pane popup menu will
display the values of variablesin the Output Pane.

To... Do...

Print the value the variable ar gc. Select the variable ar gc in line 40.
Press and hold the third mouse
button to invoke the popup menu
and choose Print.

Fx Reference M anual

Tutorial 11

Fx displays the number of arguments passed to the program in the Output Pane. Now,
execute the program to the next breakpoint.

To... Do...
Execute the program to the next Click the Continue button.
breakpoint.

After execution stops, note the Status Field under the Menu Bar. It will show the location
where you are currently working, including the line number, unit and file name.

Executing Single Statements

To execute one statement at a time, use the Step Into button in the main window. This
button will execute each statement, including any procedures that the statement contains.
The Step Over button, will also execute one statement, but if the line contains a
procedure, the debugger will not stop program execution until the procedure stops
executing. At this point in the tutorial, you should be at line 134.

To... Do...
Execute the program to line 139. Click the Step I nto button to
reach line 139.

Moveto line 140 without stepping | Click the Step Over button.
to the procedurein line 139.

If you executed line 139 by mistake and want to return to line 140, press the Return
button to complete execution of the procedure.

Dereferencing a Pointer Variable

The Print* menu item in the Sour ce Pane popup menu dereferences C pointer variables.

To... Do...
Dereference the pointer variablef | Select thevariablef , then press
referenced in line 140. and hold the third mouse button to

invoke the popup menul.
Choose Print*.

Fx displays the number of words, lines and characters counted to this point in the Output
Pane.

Fx Reference M anual

12 Tutorial

Watching Variables

Often, you will need to watch the value of a variable to determine if a procedure or
function is overwriting it. The Watch menu item in the Sour ce Pane popup menu allows
you to watch the values of variables as the program executes.

To... Do...

To watch the value of the Sdlect f->1i ne_count inline135.

expresson - > i ne_count Invoke the Sour ce Pane popup
menu and choose Watch.

Addf->word_count tothe Sedlect f - >word_count inline 136.

Watch Variables window. Invoke the Sour ce Pane popup

menu and choose W atch.

Execute the program and watch Click the Step Over button to
the values of the variables as the execute the source lines. The
statements are executed. values will be printed as the
program executes.

Removing Watched Variables

To remove the variables that you are watching, use the Window menu within the Watch
Variable window.

—| Hatch Varidbles | - |-_||
Window Help

{1} F=>line_count =0
{2} F-naord_count = 1

Figure 2-5
Watch Variables window

To... Do...
Removef - >wor d_count fromthe | Sdect f - >word_count inthe
Watch Variables window. Watch Variables window.

Choose Unwatch from the
Window menu.

Remove the other watched Choose Close from the Window
variable and close the Watch menu.
Variables window.

Fx Reference M anual

Tutorial 13

Notez When all of the variables in the Watch Variables window are removed, the
window will close automatically.

Changing Variables

Changing the value of a variable is done through the Change menu item in the Source
Pane popup menu.

To... Do...

Set the value of f - >wor d_count Select f - >word_count and

to 100. invoke the Sour ce Pane popup
menu.

Choose Change to invoke the
Change Variable diaog.

Enter 100 in the New Value text
fidd and the Change button

= El‘ﬂﬁ Yeiehle
Variahbe:

F=ruord_count

New Yalue:

160

-

Help

Figure 2-6
Change Variable dialog

If desired, you can display the new value of f - >wor d_count by invoking the Sour ce Pane
popup menu and choosing Print.

Exiting the Debugger

Y ou can end a debugging session at any time by choosing Exit from the File menu. Fx will
terminate the program you are debugging and return you to the shell prompt.

| To... | Do... |

Fx Reference M anual

14 Tutorial

Exit from the debugger.

1. Choose Exit from the File
menu.

Fx Reference M anual

15

Chapter Three

Fx Interface Reference

This chapter concentrates on the specific features of the Fx interface to enable you to get
the most out of the debugger for your needs.

* Using the Fx Interface

Describes using the Fx Debugger interface and its window: buttons, menus, and popup
menus.

* Reference Section

Provides areference guide to the features of the debugger.

Using the Fx Interface

The Fx graphic interface provides a complete windowed environment for source level and
assembly language debugging. The interface is based on the Open Software Foundation's
OSF/Motif™ user environment, and its behavior is consstent with other compliant
applications and with the OSF/Motif ™ Window Manager.

If you have never used a graphical user interface before, you may wish to purchase
additional documentation on the OSF/Motif™ user environment. One source of this
information is the "OSF/Motif™ User's Guide" published by Prentice Hall, which is often
included with UNIX documentation sets.

The Fx graphic interface permits al commands to be selected from within the debugger
windows. Most commands are executed from the main window, the Fx Debugger
window. Commands can be invoked by pressing buttons or using pull down menus and
popup menus. The following are tips when working the interface:

* Any menu item that is followed by an dlipse (...) after the item name invokes a
dialog.

* A menu or menu item may have a mnemonic, a short cut to accessing the menu
from the keyboard. Using the underlined character in the menu name with the Alt
key specifies the mnemonic. For example, to display the Option menu and its
commands, press the Alt key and the letter O on the keyboard.

* A menu item can have a mnemonic or an accelerator. To sdect a menu item using
its mnemonic, the menu must be open and visble On the other hand, an
accelerator is a key combination next to the menu selection that can be invoked

Fx Reference M anual

16 Fx Interface Reference

when the menu is not seected. For example, to set a breakpoint using its
accelerator, press the Control key and the letter B.

Fx Main Window

The main window, the Fx Debugger window contains menus, buttons and text fields to
view the source code and execute all debugging commands.

] o) ’ Fa J.:bl.w'. o : '.i_ Title Bar
Menu e Expcule Breskpoinl Morilors Displaoy Oplion Help |
Bar s — : X -
Slep ilo | Flliwmicnle Uniloman (Al Enlry) Line35 - Status Field
| Btep Ovar
|1JE|:|_| 34 walniint arge. char ®agul 1 E
Push [Comimes || = 5 e
Buttons 37 Farifo this_8i1le:
RieluiFn | 38 Funfo totals; a
A 5
| Restart & Paraelat ions (Bargs.aravi
&]
Slack Trace | £ i large == 1) /4 Mo File specified. wse standard in &
43 C
T 44 this_File file = sktdind
Togghe Source P this_Fils name F;}
TPy &5 watLountslkthiz Flled:
Show Current 7 WeibeTounts(kthis_File: Source
e 3 Code Pane
25 elme
50 i
51 bokals, word_sounk = (e
2 totals, | ire_oomt = 0
53 totsls, char_count =
ol tatala.mams & “Lokalz":
o
56 for{l = 13 | €.argc 1+2)
L
57 i |7
2 : Sash
Output
Pane
| [
Fat Conmrrsane: l"'\ ; C.ommand Text
Field
Enber auigj Fa oamiand. Pl i belp cossads Fin aeailalle cessmds :f._ Automatic
Help Field
Figure 3-1
Fx Debugger window
Menus

Fx has seven main menus that invoke debugger commands. These menus are located under
the Title Bar and provide easy access to Fx commands.

Status Field

Under the Menu Bar is the Status Field that shows information about the program you
are debugging: the line number, file name and program unit.

Fx Reference M anual

Fx Interface Reference 17

Push Buttons

Eight push buttons are located on the left side of the window which invoke commonly
used commands. To activate a button, point to the button and press the first button on the
mouse.

Navigating Through Text

The window aso contains two scrollable panes. The first is the Source Pane, which
allows you to view the program code by using the scroll bars. The second is the Output
Pane that displays output from Fx commands, such as printing the value of variables. The
text in this pane will consume memory as it builds up, so it is a good idea to delete the
output when it is not needed. The square at the top of the scroll bar on the Output Pane,
a Sash, allows you to resize the window as needed.

Popup Menus

The two popup menus, the Sour ce Pane popup menu and the Output Pane popup menu,
are amilar to pull-down menus except they can be activated anywhere within the Sour ce
Pane or the Output Pane. Pressing and holding the third mouse button activates the
popup menus.

Command Entry Text Field

The bottom of the window contains a text fidd labded, Fx Commands. All commandsin
Fx have a command line equivalent that can be entered and executed from this text field.
Also there are some commands in Fx (a very limited number) that do not have a menu or
button equivalent, and can only be executed from thistext field.

The next sections describe all the features of the Fx Debugger. A summary of the menus,
buttons and fields is given, followed by a description of the menu items.

M enus

To open a menu, position the cursor on the menu name and press the first mouse button.
To execute a menu item, click on the item. A menu may contain an item with an arrow to
the right of the menu item: this arrow denotes a cascade menu, or submenu. The submenu
contains a group of like menu items.

Some menu items may have diamonds or boxes to the left side. The diamond next to a
menu item indicates the active setting of two or more choices in the menu or submenu.
The shaded box acts as an on/off switch and notes that the menu item is active.

Also, some menu items may invoke dialogs and windows. Most of the dialogs have a
Cancel button to dismiss the dialog without performing an action and a Help button to
provide more information.

Fx Reference M anual

18 Fx Interface Reference

FileMenu

The File menu contains general menu items that control the Fx graphical interface and
debugging sessions. From this menu a debugging session can be logged, reinitialized or

shut down, in addition to other session controls.

Reinit...

The Reinit... menu item restarts a debugging session without having to shut down. Thisis
useful when specifying different source paths for a program already running, or when
loading a new program. When the Reinit... menu item is invoked the following dialog

appears.

; Ton
Read...

List...

Kill

Exit Cir+E

Figure 3-2
File menu

=

Peimitial iza Fx |

Executalile I-':EE... | Care File...

Source Path(s)... |

Execulahibe Fia:

aaaaaaaaa

H
...

Source Paths(s):

Working Directary:

== T |

This didog is smilar to the Load Program dialog: use it to specify the executable file,
core file, source path(s), and the working directory of the program you wish to debug.
The four text fields will retain their original argumentsif left unchanged. Press the Cancel

Figure 3-3
Reinit dialog

Fx Reference M anual

Fx Interface Reference 19

button to dismiss the dialog without taking any action. If you need help or additional
information about the dialog, pressthe Help button.

Log

The menu item contains a submenu with three possible sdlections: File, On, and Off. This
submenu is used to create a separate file of debugger commands.

File...

Invokes a dialog to create and name alog file. The name of the file is entered into the File
Name text fiddd. When the OK button is pressed, the debugger will record all subsequent
commands into thefile.

— Log File

File Name:

|

OK | |cancel| | Help

Figure 3-4
Log Filedialog

On
Turns on the log function for alog file that has already been created.
Off

Shuts off the log function.

Fx Reference M anual

20 Fx Interface Reference

Read...

This menu item invokes a dialog alowing you to choose a file of debugging commands
created using the L og menu item. When the OK button is pressed, the commands from
thelog file are executed.

— | Commarnd Files Selscticn
L -

Filler

Lo/ cagtutor /e

Directornes ems
eac /bt e | Hakefile
feagltutard Tutar, log
wrdent
wredent .o
wrdCnt 0

Selection

B 2

Figure 3-5
File Selection dialog

List...

When sdected, the List... menu item invokes a file sdection dialog to examine a file
without leaving the debugger. To view afile, highlight the file and press the OK button.

Kill

The Kill menu item terminates the current process being debugged without exiting from
the debugger. This menu item is useful, especially when you need to recompile a program
without leaving the debugger. It is not necessary to use the Kill menu item when you exit
from the debugger or restart program execution with the Run... menu item: both the Exit
and the Run... menu itemskill the current process before they execute.

Exit

This menu item closes the Fx Debugger interface and returns you to your shell.

Fx Reference M anual

Fx Interface Reference 21

Execute M enu

The Execute menu contains menu items that execute program code during a debugging
session.

Run...

walk...

External Erucedure...

Figure 3-6
Execute menu

Until...

Executes the program to a certain location. This menu item will show the following dialog
when selected.

T

— Execute To

Locatlion:

1 Disable Breakpoints

Help

% Execute Cancel

3

Figure 3-7
Execute To dialog

The Execute To dialog can be used to run a program to a certain location in the code.
When a location is specified in the Location text field, the debugger sets a temporary
breakpoint. The Disable Breakpoints check box tells the debugger to ignore all other
breakpoints set with the Breakpoint menu.

Fx Reference M anual

22 Fx Interface Reference

Run...

The Run... menu item isused to start or restart execution of a program.

— Fun Program

Program Amuments:

]

Run %(‘.anc:el E Help

Figure 3-8
Run Program dialog

It can be used to pass arguments to the program, such as redirecting the standard input
and output while the program executes.

Walk...

The Walk... menu item allows other debugger commands to be repeatedly issued by the
debugger itself. The command, or a series of commands, to be invoked is specified in the
Walk Command(s) text field.

— Start Walk
Walk Command(s):

” |

Start | | cancel| | Help

Figure 3-9
Start Walk dialog

After the Walk command is issued with the Start button, the debugger will continue to
execute the specified commands. The Start Walk dialog is replaced by the Stop Walk
dialog. To stop the command at any time, press the Stop button.

Fx Reference M anual

Fx Interface Reference 23

— Stop Malking

] Cick on Stop to stop walking

Stop |

Figure 3-10
Stop Walk dialog

External Procedure...

The External Procedure... menu item alows procedures and functions within the
program to be specified and executed out of sequence.

—T

— Execute Procedure

Procedure Name:

Procedure Arguments:

&xecute - | cancel Help

Figure 3-11
External Procedure dialog

Press the Execute button to execute the procedure or function. Press Cancel to dismiss
the dialog without executing a procedure. To get additional information, press the Help
button.

Fx Reference M anual

24 Fx Interface Reference

Breakpoint M enu

The Breakpoint menu contains menu items for setting, listing and deleting breakpoints.
Breakpoints are analogous to stop signs. when a breakpoint is encountered during
program execution, the program suspends execution and returns control to the debugger.
They are useful for analyzing sections of code and can be set at a particular line,
subroutine or function. Breakpoints are covered in detail in Chapter 5.

[Set...
Delete...
Delete All
List
Figure 3-12
Breakpoint menu

The Set... menu item invokes the Set Breakpoint dialog for placing a breakpoint in a
given location. To dismiss the dialog without setting a breakpoint, press the Close button.

- | Set Breakpoint

Location:

Associate Commands:

Skip Count:

5”"35] Close Help

Figure 3-13
Set Breakpoint dialog

Location Text Field

The location of the breakpoint is entered into this text field. The location of a breakpoint
can be at any valid address expression, a line number, or the first executable source linein
a procedure. For more information on how to specify a breakpoint location, see Chapter 5.

Associate Commands Text Field

Fx Reference M anual

Fx Interface Reference 25

Specifies the debugger commands to be executed when the breakpoint stops program
execution. When execution stops at the specified breakpoint, the commands will be
executed.

Skip Count Text Field

The skip count refers to the number of times the breakpoint is to be ignored before
program execution is stopped. If a skip count is not specified, a value of zero will be
used—program execution will stop thefirst time the breakpoint is encountered.

Delete...

The Delete... menu item is used to remove one or more breakpoints from a program.
When sdlected, the command will display the Delete Breakpoints dialog, shown bel ow:

—| Dzlete Breskpoints

Active Areakpoints

"urdent 0" B2

"wrdcnt .o 64

Figure 3-14
Delete Breakpoints dialog

To delete a breakpoint from the list, highlight the breakpoint and press the Delete button.
Delete All

The Delete All menu item removes all breakpoints from a program.

List

The List menu item invokes a dialog that shows all active breakpoints, any associated

commands, skip counts, and a count of the number of times each breakpoint has been
encountered without halting program execution.

Fx Reference M anual

26 Fx Interface Reference

— Active Breakpoints

U_J'im:i ow
Court Skip Location/Commands
0 0 "dry.c" 2476
0 1} Proch
0 1] Procd
RE

Figure 3-15
List Breakpoint window

M onitors M enu

The Monitors menu contains menu items for setting, removing, and listing variable
monitors. Invoking a monitor is smilar to setting a breakpoint, with a notable exception.
When a monitor is set, it will not halt execution at a specific location. Instead execution
halts when areational expression specified by the programmer evaluates true.

Monitors
Set...
Remove...
List

Command &

Figure 3-16
Monitors menu

The menu item invokes the Set Monitor dialog. The text fieds create a relational
expression that prompts the debugger to stop execution when a variable changes value.

Fx Reference M anual

Fx Interface Reference 27

— Set Monitor |

Variahle:

pAA -

Condition | Mot Equsl i [Value:

Close Help

Figure 3-17
Set Monitorsdialog

Variable Text Field
Specifies the name of the variable where the monitor will be set.
Condition Option Menu

Determines the operator used to compare the variable with the value specified in the
Value text fidd.

Value Text Field

Contains the value of the variable at which execution will stop.

Fx Reference M anual

28 Fx Interface Reference

Remove...

The Remove... menu item removes a monitor previoudy installed.

Remowe Monitors

Active Monitors
|j|. IntLocl

ga\.._.u__fw\.

% Remove Close Help

Figure 3-18
Remove Monitors dialog

List

TheList menu item displays all active monitors with ids and expressons.

—_

fctive Monitors | 2]

Window

1D Expreszsion
1 Intlocl 1= 0
3 Intloc2 1= 1

Figure 3-19
List Monitors window

Fx Reference M anual

Fx Interface Reference 29

Command

The Command submenu allows you to sdect how Fx will execute the Continue
command when working with monitors. A diamond will mark the current selection.

Monitors

et et T

Set...

Remove...

List
e e P Y

Command PO Step Into
: Step Over
Instruction Step Into
Instruction Step Over

Figure 3-20
Monitors menu with command submenu

Step Into

The Step Into item specifies that when the Continue command is invoked, the next
statement is executed and the value of the monitor will be checked.

Step Over

The Step Over item specifies that when the Continue command is invoked, the next
statement is executed and the value of the monitor will be checked. If the statement that is
executed contains any procedures, they are treated as part of the statement line

Instruction Step Into

The Instruction Step Into item specifies that when the Continue command is invoked
while working in assembly level, the next instruction is executed and the value of the
monitor will be checked.

Instruction Step Over

The Instruction Step Over item specifies when the Continue command is invoked while
working in assembly level, the next instruction executes and the value of the monitor will
be checked. If the ingruction is a call to a procedure, it will be treated as a single
statement.

Fx Reference M anual

30 Fx Interface Reference

Display Menu

The Display menu contains menu selections for controlling and printing information about
the program.

Display

Variables Ciri+V
Registers Ciri+H
Memory... CirieM
Source CtH+3

File Status
Ascii Table

Figure 3-20
Display menu

Variables

The Variables menu item alows the programmer to display global, static or local
variables. When sdected, the Variables menu item invokes the Symbol Browser, shown

below. For more information on using the Symbol Browser, see Chapter 6, “ Working
with Variables.”

Fx Reference M anual

Fx Interface Reference 31

—| Fx Sunhol Browser —+———1— Title Bar
Menu Help
Bar
f Symbal Type
Symbol fHlirrayiGlob i | struct Record £]-E] Symbol
List ERETEEE 7| Type Pane
| BonlGloh T = Sash
| ChariGlos i as
- Char?Glob thLLCG? =]D- i
| IntGlab ji | neoct =
(e 17 Output
{Peciis HH || Pane
il Varzion | |
f il
= = Format and
s = _ Size Option
l Formal [impicit o | Size | implicit & | Menus
| Expression: | PreGlbbest ; Expression
! e e = e e e e Text Fiold
Figure 3-21
Symbol Browser Window
Registers

The Registers selection is used to display the contents of the machine registers.

—| Regizter Dizplay 2|1

Window Help

eaxt (00000001 ebx: O=0804749c 5T(7): [EMPTY] 593.5

goxt OnO000Z220 edx; Ox(@047dcd STIG): [EMPTY] O

edii Ox08047ddY esi; Ox08049a73 5T(5): [EWPTY] 19660.5
ebpi Ow089047elc espr Ow(@047d7c STid): [EMPTY] O

geip: (0804855 flag: OuldO00245 ST(33: [EWPTYI O

trap: Oe00000003 err: Ow(OOO0000 ST(2): CEMPTY] 2

fpows CulODOLITF Fpew: OeOOOOO000 ST(1): CEMPTY] 9,38968e-07
fpip: 0x00000000 fpdp: (00000000 ST(O): CEMPTY] 18,6327

Figure 3-22
Register Display window

Memory...

This menu item is used to select memory addresses beginning at a specific location. The
address is specified in the Display Memory dialog, and listed in the Dump Memory
window that appears when the Display button is pressed.

Fx Reference M anual

32 Fx Interface Reference

—'| Dizplay Meamory
Adldress:

Format | Hexadecimal :i““_”ll Size ELnng £| Count: |1

Display | Close Help

Figure 3-23
Display Memory dialog

Address Text Field

The address should be entered into this text field. For more information on proper syntax
for thistext field, see Chapter 6.

Format Option Menu

This menu denotes how the memory will be displayed.
Size Option Menu

This menu denotes memory size.
Count Text Field

This text fiedd specifies the number of memory locations displayed in the M emory Dump
window.

=| Hemory Tunp | 4]

Window Help

02080498541 OxBZpchbin
0080435583 OnhIbE2cec
0x0804855c: OxBdlcecE’
Dx0B0435E0; (hoobOBdS
OxO00dEEEd s Orelipfmafii
Q08043568 O da3000
(04856 O 2BTROL00
Q048570 Ovbdalldhe f

Figure 3-24
Memory dump window

Sour ce

The Sour ce menu item invokes the Sour ce Browser window.

Fx Reference M anual

Fx Interface Reference 33

| Fx Source Browser [+]
Window View Help
Source Fles Functions
5 H Funct

Func?

Func3

Proci

Prac]

Proc2

Proc3

Prach

Prack

Proc!

Proca

nain

Figure 3-25
Source Browser window

The Source Browser ligts all the source files for the program that have been compiled
with the -g option. When a source file is clicked, the functions within the file are listed on
the right sde of the window. Within the View menu, the View Code menu item will
display the code in the Fx Debugger window.

File Status

Displays information about all connected and preconnected FORTRAN units. This menu
item is active only when debugging programs compiled with Absoft compilers.

ASCII Table

This menu item invokes a table of ASCII characters and their corresponding hexadecimal
numbers.

Option Menu

The Option menu contains two submenus with selections for customizing the way you
view and work with source code.

Fx Reference M anual

34 Fx Interface Reference

Option
Expression Language P
Case sensitivily >

Figure 3-26
Option menu

Expression Language

This submenu has three sdlections, Automatic, C, or FORTRAN, to choose the language
in which expressions are evaluated. The default is set to Automatic: the expression
language will automatically correspond to the current source code file.

xsiun Language p@tﬂmaﬁc
Case Sensitivity »! FORTRAN
<

Figure 3-27
Expression Language submenu

Case Sensitivity

This submenu allows you to set the case senstivity for variable and procedure names,
since some compilers may fold all upper case lettersinto lower case when compiling code.

Option)
Siﬂﬂ Language &= |
‘Case Sensitivity P

Both
Lower
Upper

Figure 3-28
Case Sensitivity submenu

Help Menu

The Help menu allows you to access additional information on the features of the Fx
Debugger. The on-line help system displays information on commands and windows. The
help system is composed of two parts: the Automatic Help Field and the Help Window.

Fx Reference M anual

Fx Interface Reference 35

Help
Automatic Help Ctr+H
On Topics F

On Commands

On Eersiun

Figure 3-29
Help menu

Automatic Help Field

The Automatic Help Field islocated at the bottom of the main window. When you begin
a debugging session, this window will display information about the version of Fx that you
are using. You can toggle off the Automatic Help Field by choosing the Automatic
Help item in the Help menu.

Y ou can display additional information about the buttons, text boxes and menus in the text
field by moving the mouse pointer over an item and pressing the left mouse button. The
action performed by a button or menu will not be activated until you release the mouse
button. If you do not wish to perform the specified action, simply move the mouse pointer
off the item before releasing the button.

Using the Help Window

The help window is activated by selecting the On Topics item or the On Commands item
from Help menu in the Fx Debugger window.

~| Fx Help [| |

Window Help

Comimares l[Help On: break

! A
D=leta The break command iz used to place a breakpoirt at a specified
Trstruction location in the program being debugged. The lecation can ba the name
3 of a procedurs, a file relative line nunber or the address of an

Eet"-‘” : | instruction in the program, Optionally. a skip count way be specified
Step which will cause the breskpoint to be igrored the first count times it
Vi iz encountared,

iat -
H Usagel break {entry pointHi{line nunber} {.skip counti} i

i break {"file name"Hi{line nunbert {.sxip countik

change bereak {{addresst {:.skip counth}
cloze .
P Example: break “check, f":243
delete
dump

e e TR LR Te TLL

Figure 3-30
Help window

Fx Reference M anual

36 Fx Interface Reference

After the window is visble, you can display additional information by choosing an item
from the list of topics or commands.

On Topics

Activates the help window with information on topics of interest.

On Commands

Activates the help window with information on commands available in Fx.
On Version

Display a dialog showing the version of the Fx Debugger installed.
Popup M enus

The Sour ce Pane popup menu and the Output Pane popup menu contain menu items for
working with selections in the Sour ce Pane and the Output Pane.

Sour ce Pane Popup Menu

The Sour ce Pane popup menu contains menu items for setting breakpoints, viewing code
for procedures and printing variables in the Source Pane. The menu is invoked by
sdlecting source code text and pressing the third mouse button.

Toggle Line Break

Continue To Line

Break In
View Code

Prink

Prink *

Walch

Watch =

| Change..,

F avmat P

Figure 3-31
Source Pane popup menu

Toggle Line Break
This menu item sets or deletes breakpointsin the program.

ContinueToLine

Fx Reference M anual

Fx Interface Reference 37

Allows the program to execute to a certain line. This is equivalent to setting a temporary
breakpoint that will disappear when execution halts.

Break In

This menu item sets a breakpoint within a function or procedure. When set the breakpoint
will halt program execution at the first executable statement in the procedure.

View Code

Allows you to view the code for a procedure selected in the Sour ce Pane.
Print

Prints the value of a selected variable to the Output Pane.

Print*

This menu item dereferences a selected pointer variable and prints the result to the Output
Pane.

Watch

The Watch menu item invokes the Watch Variables window, from which you can watch
the value of variables change during program execution.

Watch*

The Watch* menu item invokes the Watch Variables window, from which you can
watch dereferenced pointers during program execution.

Change...

The Change... menu item invokes the Change Variable diaog. Usng this dialog, the
value of a selected variable can be changed by entering the new value into the New Value
text field and pressing the Change button.

—| Change Wariable

Variahle:

|tu:-tal:.m:lr:|_cu:-u'1t i

Hew Value:

i
L R

[change | [cancet | | heip |

Figure 3-32
Change Variable dialog

Fx Reference M anual

38 Fx Interface Reference

Format

This sdlection contains a submenu that allows you to choose how output will be formatted
in the Output Pane.

Imjplicit

Hexadeciwal
Octal

Binary
Address

Figure 3-33
Format submenu

Output Pane Popup Menu

The sx menu items in the Output Pane popup menu are similar to the Source Pane
popup menu, except they apply to the text seected in the Output Pane.

Prink

Print *
Wakch
Wakch *
Chamge...
Fornmat Si

Erase

Figure 3-34
Output Pane popup menu

Print

This sdection prints the value of the variable selected at the bottom of the Output Pane.
Print*

This menu item dereferences a pointer and prints the output to the Output Pane.

Watch

The Watch menu item invokes the Watch Variables window to watch the value of
variables as they change during program execution.

Watch*

Fx Reference M anual

Fx Interface Reference 39

This menu item invokes the Watch Variables window, from which you can watch
dereferenced pointers during program execution.

Change...

The Change... menu item invokes the Change Variable dialog. In thisdialog, the desired
value can be entered into the New Value text field.

Format

The Format menu item contains a submenu that designates the format of output in the
Output Pane.

Imjplicit

Hexadeciwal
Octal

Binary
Address

Figure 3-35
Format submenu

Erase

The Erase menu item clears all text from the Output Pane.

Command Push Buttons

The command push buttons, located on the |eft side of the Fx Debugger window, access
frequently used commands.

Step Into

The Step Into button executes single statements. When pressed, the next line of code will
be executed. If the source line contains a function or subroutine call, execution will stop at
the first executable line of the function or subroutine.

Step Over

This button also executes single statements. However, it does not follow subroutine or
function references, like the Step Into button, but rather stops on the next source line of
the current procedure.

Continue

Fx Reference M anual

40 Fx Interface Reference

The Continue button resumes program execution until a breakpoint is encountered, an
error occurs, or the program runs to completion.

Return

The Return button resumes program execution until the current procedure returns to its
caling procedure.

Restart

The Restart button restarts program execution from the beginning of the program.

Stack Trace

This button invokes the Stack Trace window to allow you to trace all procedures

previously executed. Once opened, this window will display the procedures as the
program executes.

—| Stack lrace |4|._

Window Help

Calles Caller

maint} [_start+0x0052]
Praocis} [maint} , “dry,c":420]
Procl{} [Proc{} , "dry.c":511]

o T

Figure 3-36
Stack Trace window

Toggle Sour ce

This button toggles the source code view between high-level language and assembly
language.

Show Current

When pressed, this button displays the next line to be executed in the Sour ce Pane.

Command Entry Text Field

Although Fx provides an excellent windowed interface to execute debugging commands
from buttons and menus, commands can also be executed by using the Command Entry
text field, located at the bottom of the Fx Debugger window. Although most of the
commands are available to the user in the menus or with push buttons, this text field can
be used as a quick alternative to issue a command to the debugger.

Fx Reference M anual

Fx Interface Reference 41

Using the Command Entry Text Field

To use the Command Entry text fied, enter the name of the command and press the
Return key. A command can be executed with arguments, and must follow the syntax
format in the Command Reference in Chapter 9.

Previous commands executed from this text field can be reviewed by pressing the Up and
the Down arrow keys. The Command Entry text field will recall up to 25 commands. If
you press the Return key, the command will execute.

Fx Reference M anual

Chapter Four

Running Fx

This chapter introduces the basics of running the Fx debugger to debug programs. The
following topics are covered in this chapter:

Preparing Your Program for Debugging

Discusses compile time options to take full advantage of the Fx Debugger.
Starting an Fx Debugging Session

Provides details on loading a program and changing theinitialization file.
Restarting a Debugging Session

Introduces the Fx command for restarting a debugging sesson without leaving the
debugger.

Debugging with Core Files

Describes core files and introduces ways to use core files to pinpoint and correct
errorsin source code.

Examining Sour ce Code

Presents methods to examine multiple source files within a program, view procedures,
and list procedure calls.

Recreating a Debugging Session

Shows how to use the log feature of Fx to record and playback commands initiated
during a debugging session.

Preparing Your Program For Debugging

In order to debug at the source level, the -g option must be specified when compiling
source code (for gcc compiled code on Linux, use —gdwarf). Specifying the -g option
ingtructs compilers to include additional information in the executable program that
describes the program'’s source files, procedures, and variables.

The -g Option

Use the -g option of the standard UNIX compilers to take full advantage of Fx features.
Be aware that the -g option requires compilers, assemblers, and linkers to perform
additional work, thus the process of compiling your code will be dower. In addition, the

Fx Reference M anual

44 Running Fx

information that allows you to debug at the source level increases the amount of disk
gpace required for your program.

For trivial programs this is not a consideration, but if the program consists of sixty or
seventy source files you may want to note that Fx does not require that all of your source
files be compiled with the -g option. When debugging large programs, you may wish to
select a subset of your source files to compile with the -g option. For example, if you are
attempting to add a new feature to a program, you might re-compile only the files that
implement the new feature.

When preparing your program for debugging, you should keep in mind that many
compilers will have options which adversely affect source level debugging. Compiler
options that cause optimization, such as the -O option, should not be used while you are
still debugging a program. Although it is not impossible to debug optimized code at the
source level, optimizations can create additional problems. For more information, see
Appendix C for information on debugging with optimized code.

Starting an Fx Debugging Session

This section gives information on loading programs for debugging with Fx.

L oading a Program for Debugging

Start Fx by entering xfx a the command shell prompt. Fx will display the Load

Program dialog used to specify the executable file, core file, source path(s), and the
working directory.

] Load Progras
{Exaeuiablp Fe... | [Core Hb... | §somrce Pata(s)...|

Ereviaie e

e Fe:

e]

Source PEMR(E)!

L I
\Workimy Darerciory:

| |

Figure 4-1
Load Program dialog

Executable File Text Field

Fx Reference M anual

Running Fx 45

The executable file is the program to be debugged. Since the standard compilers usually
create an executable program named a. out , Fx will supply this default name. If you need
to specify the file to be used, enter the name of the file in the box, or use the Executable
File button to select the file from the selection box.

CoreFile Text Field

Fx allows you to use the core file of a program to determine the location of errors in the
code. Fx will automatically use the core file if it exists in the same directory as the
program being debugged. If the core file is in another location, you must specify it by
typing its directory and name into the Core File text fied. Corefiles are also discussed in
the section entitled, "Debugging with Core Files' later in this chapter.

Sour ce Path(s) Text Field

This text field allows you to specify the directory or directories that contain the source
filesfor the program being debugged.

Working Directory Text Field

This text field specifies the directory that will become the program's current directory
when running under Fx.

Using the Selection Dialogs

Along the top of the L oad Program dialog there are three buttons that will invoke a file
selection dialog which allows you to choose the executable file, the core file, and source
paths. The dialog alows you to choose thefiles: sdect the file and click the OK button.

After specifying the necessary files, click the OK button in the Load Program dialog to
start the debugger.

Executing Fx Commands During I nitialization

You can also have Fx automatically execute commands after it has loaded your program.
This section discusses the Fx initialization file that makes this possible.

About .fxinit

Each time you start a debugging session, Fx looks for afilenamed . f xi ni t in the current
working directory and in the directory specified by the environment variable HOVE. If this
file is found, Fx will execute any commands it contains. If .fxinit exists in both
directories, thefilein the HOVE directory will be read first.

The primary purpose of this file is to automatically redefine the internal variables within
Fx, alowing you to customize Fx’'s defaults for command behavior. These internd
variables, referred to as control variables, are listed in Appendix B. An initialization file
can also be used to execute any Fx command. For example, if you are repeatedly

Fx Reference M anual

46 Running Fx

debugging the same procedures in a program, you might create an initialization file that
will automatically set breakpoints on these procedures.

A sample .fxinit file

Lines which start with the character '# and blank Iines
are ignored, allowing comments to be added if desired.

Set the format used for displaying single precision val ues
change $ffmt = "(E12.4E3)"

Set the maxi mum nunber of array el enents displ ayed when
unsubscripted arrays are used with the print comrand
change $acount = 10

Set the default expression |anguage to FORTRAN

change $defl ang = " FORTRAN'

Set the default tab spacing

change $tabsize = 5

Restarting A Debugging Session

When you start a debugging session, you may realize that you failed to specify a directory
containing files needed to debug your program. The Reinit... menu item is used to restart
Fx and specify the new directories without terminating the debugging session.

The Reinit... Menu item

The Reinit... menu item allows you to change the command line arguments entered when
Fx was first launched. The menu item invokes the Renitialize dialog that alows you to
change the name of the program being debugged, the name of the core file associated with
the program, and the list of source directories.

—| Peimitial iza Fx |
e = 1
|Executable Fle... | | Core Fle... { Source F‘ath{s}...l
Executahbe File:
Core File:

Working Directary:

Source Paths(s):

Tox | e T |

Figure 4-3
Reinitialize dialog

Fx Reference M anual

Running Fx 47

For example, if you started Fx and found that you forgot to specify the source path
/ hone/ sysdep/ , you can restart the debugging session by doing the following:

Example:

» Choose Reinit from the File menu.
* Enter / hone/ sysdep/ in the source path text field.
* Pressthe OK button.

Since the program name and the core file were not changed, Fx will continue to use the
original arguments specified: a. out and none.

You can aso use the Reinit... menu item to begin a debugging session on a completey
different program. If you have finished debugging a.out, you can begin debugging
another program using completely different parameters.

Debugging with Core Files

When running a program under development, a message similar to

Segnent ati on violation - core dunped

may appear. When this happens the operating system crestes a file containing an image of
your program's memory at the time the error occurred. Thisfile, a corefile, can beused in
Fx to track the errorsin the program.

Using Core Files

At the beginning of a debugging session, Fx looks in the current directory for the corefile.
If this file exists, Fx uses it to determine the location of errors and display the offending
source line. Since your program is not executing when a core file is used, the menu items
for executing programs will be grayed.

Often, a core dump will be produced by an error in one of the libraries linked with your
program. This can occur because of incorrect arguments passed to a library routine or
because there is a bug in the library itself. In either case, you are unlikdy to have source
code for the library and Fx will display a screen full of assembly language instructions.
What you need to know isthe point in your program where the library routine was called.

Using the Stack Trace button you can display alist of all the proceduresin your program,
sarting with the main entry point, and ending with the procedure that caused the core
dump. By examining this list, you can determine where the error occurred in your

program.

When you have determined the location, one course of action is to set a breakpoint and
start program execution with the Run... menu item. When the breakpoint is encountered,

Fx Reference M anual

48 Running Fx

you can use the Print menu item to verify that you are passing the correct arguments to
the routine that caused the error.

When a debugging session is initiated without a core file, Fx will load the program and
execute it until its main procedure is entered. Further execution of the program under the
debugger interface is controlled using the buttons and menus in the main window.

Examining Sour ce Code
Source code can be viewed within the current source code file or within other source files.
Viewing Program Source Files

The Source Browser ssmplifies examining source code. With the Sour ce Browser you can
find the name of a source file, function or procedure. This is particularly useful when
debugging code written by another programmer when you know the name of a procedure,
but do not know its source file. The Source Browser is accessed through the Source
menu item in the Display menu.

—| Fx Source Browser BN
Window View Help
Source Fles Functions
dry,c | EE Funcl A

Funcz
Func3
Proci
Prac]
Proc2
Proc3
Prach
Prack
Proc!
Proca
nain

Figure 4-4
Source Browser window

The left sde of the window will display the source files for a program when you choose
the Sour ce menu item from the View menu. Click on the name of a source file to view all
of its functions. To display the source code for a function, click on the function in the
Functions list box, and choose View Function from the View menu. You can aso
double-click on the function to see the source code in the main window.

Fx Reference M anual

Running Fx 49

When you want to return to the current source line, use the Show Current button in the
main window.

Viewing Other Files

The Sour ce Browser can only display files that comprise the source code for a program.
To examine an include file to determine the value of a predefined constant or FORTRAN
parameter, you can use the List... menu item under the File menu. This menu item allows
you to examine the contents of any text file without leaving the debugger. When the
List... itemisinvoked, the List File Selection dialog will appear. This diaog is like any
other selection dialog; useit to select and open the includefile or other text file.

Viewing Procedures

A procedure in the Source Pane can be viewed using the Source Pane popup menu.
Select the procedure name within the statement and choose the View Code item. The
window will show the code for the procedure.

Viewing Execution Status

The Stack Trace button in the Fx Debugger window is used to display the chain of

procedure calls which produced the current program state. This button will invoke the
Stack Trace window.

—-| Stack lrace | 4 | o |
Window Help
Calles Caller

maint} [_start+0x0052]

Praocis} [maint} , “dry,c":420]

Procl{} [Proc{} , "dry.c":511]

}%ﬁ

Figure 4-5
Stack Trace window

In the window, each procedure in the current chain is listed along with the calling
procedure that called it and the calling procedurée's file and line number if available. Using
the View Code menu item in the Window menu, a procedure may be sdlected and viewed
in the Sour ce Pane.

Recr eating a Debugging Session

When debugging large programs, it often takes a considerable amount of work to get the
program to the point where it fails. This process may involve entering many different Fx

Fx Reference M anual

50 Running Fx

commands, or changing the values of program variables at different pointsin the program.
Sometimes you will get the program to the point of failure and then accidentally execute
the wrong command.

Fx provides the Log menu item to record all of the commands you have entered in a
separate file and then play them back. This allows you to recreate the debugging session
without having to reenter the commands.

Using the L og Selection
The Log feature in the File menu is a submenu containing three items: File, On and Off.

To create arecord of a debugging session in the program file, select Fileto create the new
file and turn on the L og feature.

—| Leg File

File Name:

|

OK | |cancel| | Help

Figure 4-6
Log Filedialog

After you have specified the name of a log file, Fx will store a copy of all subsequent
commands used into the file. Fx will only log those commands that execute successfully.
In addition, you can sdlectively turn logging on and off with the On and Off items. You
may wish to do this to avoid logging commands, such as the Print command, that do not
affect program execution.

Using the Read Item

After you have recorded a debugging session, you can use the Read... menu item in the
File menu to replay it. In addition to recreating entire debugging sessions, you can also use
the Read... menu item to execute any file of Fx commands. Fx will then execute all of the
commands in the file as if you had entered them using the menu items or used the
command line box.

When recreating a debugging sesson, you must make sure that your program is in the
same date that is was when you first turned on the Log command. For this reason, you
may want to make the Log menu item the first selection you enter after starting a
debugging session.

Fx Reference M anual

ol

Chapter Five

Executing Programs in Fx

The previous chapter covered the basics of launching programs in Fx. This chapter covers
methods you will use to execute programs within the debugger.

Executing Single Statements

Discusses the use of the Step Over and the Step Into buttons to execute single
statements.

Using Breakpoints

Describes what a breakpoint is, how to install and remove breakpoints, and how to
automatically execute alist of commands when a breakpoint is encountered.

Executing Programs

Provides a guide to restarting or resuming program execution during a debugging
session.

Animating Program Execution
Details how to animate program execution by repeating commands.
Calling Program Procedures

Describes how to test procedures with different arguments and execute special
debugging routines.

Executing Single Statements

Instead of executing a program from beginning to end, you may need to execute your
program one statement at a time. Fx provides the Step Over and Step Into buttons to
execute single statements. Both buttons are located in the Fx Debugger window.

The Step I nto Button

The Step Into button will execute the next source line of your program. If the statement
that is executed with the Step Into button is a call to a subroutine or function, execution
will progress through the subroutine or function call and stop at the first executable source
line in the function or subroutine.

The Step Over Button

Fx Reference M anual

52 Executing Programsin Fx

This button also executes single statements. However, it does not follow subroutine or
function references, like the Step Into button, but rather stops on the next source line of
the current procedure.

Returning from Subr outines

When executing your program one statement at a time, you may find that you have
pressed the Step Into button when you really meant to press the Step Over button.
Suddenly, your program is stopped in a procedure in which you have no interest. The
Return button will resume execution until the current procedure returns to its calling
point or a breakpoint is encountered.

Using Breakpoints

Although it is possible to use the Step Over and Step Into buttons to execute your
program until you determine where a problem is, this process is inefficient for most
programs. Your program may require a complex series of events to occur, or it may need
to run for a considerable amount of time before a problem shows up. Using breakpoints
allow you to execute your program at full speed until a specific procedure or sourcelineis
encountered.

Breakpoints are implemented by replacing the machine language instruction at the
specified location with an instruction that will cause your program to stop execution.
When this ingtruction is executed, control returns to Fx, which then determines that a
breakpoint has been encountered and restores the original instruction. When execution of
the program is then resumed, Fx ingtalls the breakpoint again after executing the replaced
instruction. You can set breakpoints from the Source Pane popup menu or from the
Breakpoint menu.

Using the Sour ce Pane Popup Menu to Set Breakpoints

The Sour ce Pane popup menu allows you to set breakpoints at a line of source code or
within a subroutine or function in your program.

Setting a Breakpoint on a SourceLine

The easiest way to install a breakpoint on a source line is to use the Toggle Line Break
menu item in the Sour ce Pane popup menu.

Fx Reference M anual

Executing Programsin Fx 53

Toggle Line Break

Continue To Line

Break In
View Code

Prink

Prink *

Walch

Watch =

| Change..,

F avmat P

Figure5-1
Source Pane popup menu

Exanpl e:

* Triple-click on the source code linein the Sour ce Pane.
* Press the third mouse button and choose Toggle Line Break.

The installed breakpoint symbol, B, will appear on the left side of the source code line,
indicating that the line contains a breakpoint.

Setting a Breakpoint in a Procedure

To set a breakpoint within a function or procedure, use the Break In menu item in the
Sour ce Pane popup menu.

Exanpl e:

* Select the function or procedure.
* Press the third mouse button and choose Break I n.

Setting a Breakpoint with the Breakpoint M enu

The Set... menu item in the Breakpoint M enu allows you to specify breakpoint location,
a skip count, and commands to execute when program execution stops at the breakpoint.
When thisitem is selected, the Set Breakpoint dialog will appear:

Fx Reference M anual

54 Executing Programsin Fx

- | Set Breakpoint

Location:

Associate Commands:

Skip Count:

3’"35] Close Help

Figure 5-2
Set Breakpoint dialog

Location Text Field

The location of the breakpoint is entered into this field. A breakpoint location can be
specified in one of three ways.

1. For source lines enter:
"filename”: line number
or just enter
:line number

to use the current source file. The line number must be an integer constant. If the line
number is not specified, the breakpoint will be set at the first executable line of thefile.

2. For procedure names, enter:
procedure name: line number

If the number 1 is used, the breakpoint will be set on the first line of the procedure. If a
line number is not specified with the procedure, the breakpoint will be set on the first
instruction of the specified procedure. However, if you stop execution on the first
executable instruction, you will not be able to examine or modify the values of local
variables and procedure arguments until the procedure's preambl e code has been executed.

3. For assembly language addresses enter:

address

Fx Reference M anual

Executing Programsin Fx 55

Useful address expressions for specifying breakpoints include the name of an entry point,
the name of an entry point plus an integer offset, or an absolute address specified as an
integer constant

Associate Text Field

The Associate text fiddd names Fx commands to be invoked when a breakpoint is
encountered. Multiple commands may be specified by separating each command with a
semi-colon. You might use this text field to enter the name of a variable whose value is to
be printed each time a breakpoint is reached.

Since you can associate any list of Fx commands with a breakpoint, it is possible to stop
program execution, change the value of a variable, and then resume program execution
without having to enter the commands each time that the breakpoint is encountered. By
doing so, you may be able to temporarily fix a problem without having to edit and compile
your source code.

Exanpl e:
Consi der the foll ow ng FORTRAN functi on:

REAL FUNCTI ON sumarray(array, si ze)
REAL array(size),result
I NTEGER i, array_size, size
array_size = size
DO 10 i =1, array_size
result = result+array(i)
10 CONTI NUE
sumarray = result
RETURN
END

Since the local variable result is not initialized to zero, this function will return
unpredictable results. This problem can be temporarily fixed by entering

sumarray: 1

into the L ocation text field and the following into the Associate text field:
change result=0.0; conti nue

Skip Counts

The Skip Count text field allows you to specify the number of times the breakpoint is to
be ignored before program execution is stopped. You may find that you have isolated a
bug in a specific loop in your program. You can set a breakpoint on the start of the loop
and repeatedly press the Continue button until you find the problem. However, the
problem may only occur on the 100th, 1000th, or 10000th iteration of the loop.

Since pressing the Continue button 100 times can be time consuming, Fx provides the
Skip Count text field as a way to automate this procedure. If you are debugging a loop

Fx Reference M anual

56 Executing Programsin Fx

where an error occurs on the 100th iteration, you can set a breakpoint to be invoked at
thiserror by entering a value of 100 in the text field.

Listing Breakpoints
The List item in the Breakpoint menu displays a list of all breakpoints in your program.

This list contains each breakpoint location, skip count, number of times the breakpoint has
been skipped, and any associated commands.

— Active Breakpoints

U_J'im:i ow

Court Skip Location/Commands
0 0 "dry.c" 2476

0 1} Proch

0 1] Procd

JEE

P —

Figure 5-3
List Breakpoint window

Removing Breakpoints

Y ou may find that you have set a breakpoint at an inappropriate location, or a breakpoint
may have served its purpose and is no longer needed. You can remove one or more
breakpoints with the Delete... menu item. When you sdect this menu item, the Delete
Breakpoints dialog appears.

—| Dzlete Breskpoints

Active Areakpoints

"urdent 0" B2
"wrdcnt .o 64

Figure 5-4
Delete Breakpoints dialog

Toimmediately remove al breakpoints from the program, use the Delete All menu item.

Executing Programs

Fx Reference M anual

Executing Programsin Fx 57

Often you may need to specify arguments or resume program execution after debugging
with breakpoints. The Run... menu item and the Continue button allow you to execute
programs according to these needs.

Using the Run... Menu Item

The Run... menu item restarts program execution, and allows you to specify arguments to
the program. When you sdect the Run... menu item from the Execute menu, the Run
Program dialog appears.

—'| Fun Program

Program Amuments:

-]

E Run %u(‘.ancell E Help

Figure 5-5
Run Program dialog

To restart execution of the current program with the argumentsone two three:

Exanpl e:

* Choose the Execute Menu and select the Run... menu item.
* In the Program Argumentstext field, typein one two three.
* Pressthe OK button

Once you have specified arguments using the Run... menu item, Fx will continue to use
those arguments until you specify different ones. If you have specified arguments and then
wish to run your program again with no arguments, you can do so by clearing the
Program Arguments text field or by entering the following in the Command Entry text
fidd:

change $args = *
Using the Continue Button

The Continue button in the main window resumes execution of a program that has been
halted. When invoked, the program is executed until an error occurs, a breakpoint is
encountered, or the program runs to completion.

Animating Program Execution

Fx Reference M anual

58 Executing Programsin Fx

Commands do not have to be issued one at atime. The Walk... menu item in the Execute
menu provides the ability to repeatedly execute one or more commands.

Start Walk Dialog

When the Walk... menu item is sdected from the Execute menu, the Start Walk dialog
appears.

— Start Walk

Walk Command(s):

” |

Start | | Cancel | Help

Figure 5-6
Start Walk dialog

For instance, if you wanted to execute the Step Into button repeatedly, you would type
st ep into the Walk Command(s) text fidd and click on the Start button to issue the
command.

Stop Walk Dialog

The Stop Walk dialog appears after you have initiated the Walk... menu item. As the
command is repeatedly issued by the Walk command, the Stop Walk dialog is available
to stop the walk process.

— Stop Malking

] Cick on Stop to stop walking

Stop |

Figure 5-7
Stop Walk dialog

Calling Program Procedures

Any time your program is stopped at a breakpoint, Fx alows you to call any of its
functions or subroutines as if they were the next statement to be executed. You can use

Fx Reference M anual

Executing Programsin Fx 59

this feature to test a particular routine with a variety of arguments or to call debugging
procedures to format data or test specific conditions.

Using the External Procedure... Menu Item

The External Procedure menu item allows you to execute any routine in your program
out of sequence. You can pass arguments to the procedure, or set a breakpoint in the
procedure and execute Fx commands while this procedureis active.

When a function is called with this menu item, Fx will automatically display the function’s
result when it returns.

—T

— Execute Procedure

Procedure Name:

Procedure Arguments:

&xecute - | cancel Help
Figure 5-8
Execute Procedure dialog

Exanpl e:
If you are debugging a FORTRAN program which contains the following function:

REAL FUNCTI ON SUMBREALS(X, Y, 2)
REAL XY, Z

SUMBREALS = X+Y+Z

RETURN

END

Y ou can execute this function by entering SUMBREALS into the Procedur e Name
text field and 1. 0, 2. 0, 3. 0 into the Procedur e Arguments text field.

In the preceding example, the arguments to the function SUMBREALS were constants, but
they can just as easily be variables or expressions. Y ou are not limited to passing constants
to routines called with the External Procedure... menu item. Keep in mind that Fx does
not assure that the number and type of arguments you are passing agrees with what the
routine is expecting.

Fx Reference M anual

60 Executing Programsin Fx

You can also use the External Procedure... menu item to format arbitrary portions of
program memory as if it represented a particular data structure in your program. In order
to do this, you need only create a small debugging function that takes a pointer to the data
structure as an argument and returns a pointer to the argument as a result.

Setting Breakpointsin External Procedure

Breakpoints can also be set in a procedure before calling it with the External
Procedure... menu item. Execution of the procedure will stop just asiif it had been called
normally. Afterwards, other Fx commands can be used to execute the procedure or to
display the procedure’ s arguments and variables.

Fx Reference M anual

61

Chapter Six

Working with Variables

An advantage of source level debugging is the ability to display the values of program
variables without having to insert special debugging statements into your program. This
chapter focuses on working with variables during a debugging session.

» Displaying Variables

Presents the menu items for displaying the names, types and memory addresses of your
program's variables, arrays and structures.

* Modifying Variables
Provides a guide to changing the values of your program's variables.
* Finding Overwritten Variables

Describes the use of monitors to stop program execution when a variable changes
value.

Displaying Program Variables

Viewing program variables can be instrumental in tracking down problems in your code.
Fx alows you to examine the contents of your program’s variables and data structures
whenever your program has stopped execution.

ThePrint and Print* Menu ltems

Showing the value of smple variables is easy; use the Print menu item located in the
Sour ce Pane popup menu. This item displays the contents of your program’s variables in
the Output Pane of the Fx Debugger window.

For example, if a FORTRAN program defined the following variables:

| NTEGER |
REAL X
COWPLEX Z

You can display their values by highlighting each variable in the Source Pane and
choosing Print from the Source Pane popup menu. The values of 1, X, z will be
displayed in the Output Pane, and will be in the format appropriate for their respective
types. | as a decimal integer, X as a single precison floating point number, and z as a
single precision floating point pair. Fx will use the symbol information output by compilers
to determine the type and size of avariable.

Fx Reference M anual

62 Working with Variables

The Print* item is automatically available for source code written in C and dereferences a
pointer variable, sending the value to the Output Pane.

Displaying Arrays, Structures and Unions

The contents of arrays, structures and unions are displayed in the Output Pane with the
Print menu sdection. Individual eements of an array, structure or union are displayed by
highlighting the dement in the Output Pane and choosing the Print item from the
Output Pane popup menu. Pointers to structures and unions can be dereferenced using
the Print* menu item.

If the name of an array is sdlected, Fx will display every dement using the indexing
conventions of the language in which the element was declared. Fx will also use a format
appropriate for itstype, or an explicit format can be specified with the For mat submenu.

Setting For mats

The Format submenu in the Sour ce Pane and Output Pane popup menus allow you to
select how variables will be printed in the Sour ce Pane and Output Pane.

Imjplicit

Hexadeciwal
Octal

Binary
Address

Figure 6-1
Format Submenu

Implicit: The contents of the variable will be printed in the most appropriate format. This
isthe default setting of the Format menu item.

Hexadecimal: Prints the contents of the variable as a hexadecimal integer.
Octal: Printsthe contents of the variable as an octal integer.
Binary: Printsthe contents of the variable as an binary integer.

Address: Prints the address of the variable.
Evaluating Expressions

In addition to displaying the values of variables, the Print selection will aso evaluate
expressions which involve variables, numeric constants, and source language operators.
These expressions can be as smple as adding 10 to the contents of a variable or can
include multiple variables and the complete set of FORTRAN intrinsc functions. To
evaluate an expression, highlight it and choose the Print sdection from the Output Pane
popup menu.

Fx Reference M anual

Working with Variables 63

Watch and Watch* M enu |tems

At some point during a debugging session, you may want to observe the value of an
expression as your program executes. The Watch and Watch* items are located in the
Sour ce Pane and Output Pane popup menus. Each will invoke a window called Watch
Variables that shows the value of sdected variables as the program executes. The next
example shows how to display the value of the array element a(i,j) when program
execution stops.

Example:

* Highlight the array element.

* Choose the Watch item to invoke the Watch variables window.

* In the main window, press the Step Over button to execute the program. The
value of the array dement changes in the Watch Variables window during
execution.

Formatting for the Watch and Watch* items is set using the Format item in the popup
menus.

The Symbol Browser

The Symbol Browser is used to print and watch the contents of variables, expressions and
structures within your programs. The Symbol Browser has additional features not
available with the Print and Watch items described above.

Fx Reference M anual

64 Working with Variables

—'i Fx Sunbol Browssr | «]
Window List Help
El’
Global Symbols Symbol Type
frraylClob i | struct Record { %
Array?Glob i
Boollab : Bl = ;
CharlGlab E}-
Char2Glab] | Intlocz = 1 =
Bl 1ntClah Intlocl = 0
Ptrilb

Wersion

=

ﬂExpr‘essiun: IE:::E]I:Next i

. s - d

Figure 6-2
Symbol Browser window

Within the Symbol Browser window, the menu bar has three menus. Window, List, and
Help. The Window menu contains an Erase selection, to clear the contents of the Output
Pane, and a Close sdection to close the window. A list of the variables is shown in the
Symbol List on the left side of the window. The List menu allows you to view the different
types of variables available: Global, Local, or Static.

Global Symbols

When Global Symbols are selected, the debugger will only list those variables that are
declared in the active sourcefile.

L ocal Symbols

Sedlecting Local Symbols will display the arguments and local variables for the current
subroutine or function.

Static Symbols

Static Symbols item will display the file scope and static variables for the current source
files.

When you click an item in the Symbol List, the type of the variable is displayed in the
Symbol Type Pane. Below it, the Output Pane displays the values of expressions. Both

Fx Reference M anual

Working with Variables 65

the Symbol Type and Output Panes can be resized using the sash at the top of the lower
scroll bar. Both also have a popup menu, like the ones available in the Fx Debugger
window.

Any expression can be entered in the Expression text fiedd. When Return is pressed, the
result is displayed in the Symbol Browser Output Pane.

Setting For mats and Sizes
Variables can be printed in additional formats and sizes using the Format and Size menus.

By pressing these menus, a sdection can be made from the list of formats and sizes
avallable.

M odifying Variables

Fx alows you to modify the values of program variables when execution of your program
is stopped. The Change... item is used to assign new values to program variables and Fx
control variables.

The Change... Menu Item

The Change... menu item islocated in both of the popup menus for the main window and

the Symbol Browser. The dialog allows you the enter the name of the variable and the
desired value.

—| Change Wariable

Variahle:

|tu:-tal:.m:lr:|_cu:-u'1t i

Hew Value:

i
L R

[change | [cancet | | heip |

Figure 6-3
Change Variable dialog

When assigning new values to variables with the Change... menu item, Fx will perform
appropriate type conversions when possible and inform you when you have specified a
value that is inappropriate for the variable you are modifying. New values can be specified
as constants or expressions.

Finding Overwritten Variables

Fx Reference M anual

66 Working with Variables

One difficult bug to track down iswhen a program variable is overwritten by a source line
that doesn’t appear to reference it. Array boundary errors and invalid pointers are typical
causes of this behavior.

Sometimes, you will have no idea where in your program the error occurs. When faced
with this type of problem you have little choice but to execute portions of your code and
check to seeif the variable in question has been modified. This type of debugging is both
frustrating and time consuming. Fortunately, Fx provides variable monitors, a feature that
will perform much of this task for you.

Using Variable M onitors

When you suspect that the content of a variable is being overwritten, you can use the
Set... menu item in the M onitor s menu to stop program execution when the value of that
variable changes. You can also install monitors that will halt execution of the program
when the value of a variable meets a specific condition.

When you select the Set... item, the Set M onitor s dialog appears and allows you to enter
the name of the variable, choose the condition for the monitor value, and enter the value at
which to stop program execution. The condition can be set at equal to, not equal, greater
than or less than the value.

=| Set Homitar

Figure 6-4
Set Monitors dialog

To stop program execution when a variable changesits value:
Example:

* Enter the name of the variable into the Variable text fiad.
* Using the Condition menu, choose 'not equal’.
* Click on Set button and click Close.

Sincethevaueis not specified, it isimplied that the valueis equal to the current value.

When the value of the variable is changed, the Monitor Activated window will appear
and show information on the variable, including its monitor id and current value.

Fx Reference M anual

Working with Variables 67

- Horitor Aot iuvsted
Winithowe
Stopped for monitor BLI f-char_count 1= O
Getlountsz139
Mew walus: 7d
'II) =

Figure 6-5
Monitors Activated window

When the Continue button is used with a variable monitor installed, Fx will execute one
source statement of your program and then check the value of the monitored variable. If it
has changed, execution of the item will be terminated, otherwise the next source statement
will be executed. This process is repeated until the monitored variable changes value or
the command finishes execution. After you have installed a variable monitor, when you
press the Continue button, you will notice that execution is much slower.

Removing Monitors

Variable monitors are automatically removed when they stop program execution.
However, you may wish to remove one before this occurs. The Remove... item in the
Monitors menu allows you to highlight and delete monitors.

— Remowe Monitors I

Active Monitors

1 Intlocl j

. IntlLoc2 i

% Remove Close Help
Figure 6-6

Remove Monitors dialog
Listing Monitors

If you want to see the monitors you have installed, you can use the List... item to display
all of the currently installed monitors. This menu item invokes a dialog which displays the
monitor id numbers, al variables being monitored, and the value that the variables had
when the monitor was installed. The id of the monitor is useful if you issue the unmonitor
command from the Command Entry text field.

Fx Reference M anual

68 Working with Variables

—_

fctive Monitors | -

Window

1D Expreszsion
1 Intlocl 1= 0
3 Intloc2 1= 1

Figure 6-7
List Monitors window

Fx Reference M anual

69

Chapter Seven

Assembly Language Debugging

The previous chapters described methods and commands for source level debugging. This
chapter describes the features of Fx that support debugging programs at the assembly or
machine language level. If most of your programming is done at the source level, you can
skip this chapter. However, chances are that eventually you will need to descend to this
level of debugging, so you may want to become acquainted with the facilities that are
available. This chapter discusses the following topics:

* Using Fx Commands at the Assembly L evel

Presents details on using the commands described in the previous chapters when
debugging at the assembly language leve.

» Displaying Program Memory and Registers

Presents how to display program memory, and how to display and modify the value of
program registers.

Using Fx Commands at the Assembly L evel

For the most part, the Fx commands presented in Chapters 3, 4 and 5 can be used at the
assembly level. This section provides details on using these commands to debug programs
at the assembly language levd.

Examining Assembly L anguage Code

When source level debugging information is not available for a procedure, Fx will
automatically switch to assembly language debugging. If you are debugging a procedure
that has source level information, you can switch to assembly language debugging by
using the Toggle Sour ce button in the main window.

The Toggle Source button switches the Source Pane between source and assembly
language code. The Sour ce Pane will function in the same way in assembly language: text
can be viewed using the scroll bar and the commands in the Sour ce Pane popup menu are
avallable.

When assembly language is displayed in the Sour ce Pane, the Step Over and Step Into
buttons can be used to execute your program one ingtruction at a time. The Step Over
button will treat subroutine calls as single instructions.

Fx Reference M anual

70 Assembly L anguage Debugging

Resuming Program Execution

Y ou can use the Continue button to resume execution of your program until a particular
entry point or instruction is reached. Aslong as your program has not had its symbol table
removed, you can also use the Return button to resume execution of your program until
the current procedure returns to its calling point.

Setting Breakpoints at the Assembly L evel

When debugging at the assembly language level, you can use the Breakpoint menu to
install breakpoints on the entry points to procedures and on particular instructions within
procedures. You can also specify skip counts for these breakpoints, and use the Associate
text field to automatically execute commands when a breakpoint is encountered.

Displaying and Changing Registers
Y ou can display and modify the current values of machine registers any time your program

has stopped executing. The Registers menu item in the Display menu will display the
contents of al machineregisters.

—| Regizter Dizplay

Window

gaxt (00000001 ebx: O=0804/d9 5T(7): [EMPTY] 593.5

poxt Ox0000ZZ20 edx: Ox(8047dcB STOG): [EMPTY] O

edi; Ox08047dd7 esi; 0x08049a73 S5T(5): [EMPTY] 19660.5
ebpi Ow089047elc espr Ow(@047d7c STid): [EMPTY] O

eip: (0804855 flag: (00000246 ST(33: [EWPTYI O

trap: Cea00OO000Z ere: Ow(OOOO000 ST(23): CEMPTY] 2

fpow: GelQO0L37F Fpsw: OeOOOOOO00 ST(1): [EMPTY1 9,3836Be-07
fpip: Cee0ODOOOOD Fpdp: OeODOOOO00 ST(03: [EMPTY1 18,6327

Figure 7-1
Register Display window

If a particular machine provides dedicated floating point registers, the values of these
registers will be displayed as floating point numbers. All other registers will be displayed
as hexadecimal integers.

Individual registers can be displayed in a variety of formats using the print command in
the Command Entry text field located in the Fx Debugger window. When referring to
individual registers, the register name must be preceded by a “$” to digtinguish it from
symbolic names of variables. For example, to print the value of register Do, you would
enter $D0 into the Command Entry text field.

Displaying Program Memory

Fx Reference M anual

Assembly L anguage Debugging 71

Fx provides a menu sdection that displays arbitrary locations in program memory. The
Memory... menu item in the Display menu allows you to output the contents of a single
memory location or a range of memory locations to the Memory Dump window.
Selecting the Memory... menu item invokes the Display M emory dialog.

= Dizplay Hemory
Aildress:

SNV,

Format | Hexadecimal :i““_”ll Size Long < Count: |1

Display | Close Help

Figure 6-2
Display Memory dialog

The Address text field is used to specify the memory address you wish to examine. The
Format and Size option menus allow you to specify the manner in which the contents of
the memory address are displayed. The Count text field alows you to examine multiple
memory locations starting at the specified address.

When the Display button is clicked, the memory locations will be shown in the Dump
Memory window.

=| Hemory Tunp | 4]

Window

Ox0804885d: OxBZacBbEh
0080435583 OnhIbE2cec
0x0804855c: OxBdlcecE’
Ux0B04E5E0: OBBEb0B4G
OxiH04E5Ed s Dbl malic
Q08043568 O da3000
(04856 O 2BTROL00
Q048570 Ovbdalldhe f

Figure 6-3
Memory Dump window

M onitoring Registers and M emory L ocations

You can use the Set... item in the Monitors menu to halt execution of the program when
the value of aregister or memory location changes at the assembly levdl.

When working with monitors at the assembly level, you will need to use the Command
submenu in the Monitors menu to change the way Fx executes your program when the
Continue button is pressed. Select ether the Instruction Step Into item or the

Fx Reference M anual

72 Assembly L anguage Debugging

Instruction Step Over item. When the Instruction Step Into item is sdected and the
Continue button is pressed, Fx will execute your program one instruction at a time,
checking the value of the monitor after each instruction. When the I nstruction Step Over
item is sdlected, Fx will treat all subroutine calls as single instructions.

Fx Reference M anual

73

Chapter Eight

Command Arguments

In order get first time users started with Fx as quickly as possible, the previous chapters
have glossed over the details of specifying arguments to Fx commands. This chapter
describes provides more detail on the items which can be specified as arguments to Fx
commands. The chapter coversthe following topics:

* ldentifier Scoping
Describes the scoping conventions used for Fx command arguments.
» Specifying Symbols
Discusses the interpretation of program variables and procedure names.
» Specifying Constants
Describes the syntax for entering constants as command arguments.
* Specifying Registers
Describes using machine registers as command arguments.
* Expression Interpretation

Discusses the interpretation of variables, entry points and constants when used in
expressions.

I dentifier Scoping

Identifier scoping refers to the identifiers that are accessible at the current state of the
program being debugged. Some arguments are not dependent upon the program and are
aways available. Program constants, as well as Fx Control Variables, interna variables
within the debugger, would be examples of these type of arguments. Control Variables are
listed in Appendix B.

Other arguments, such as local variables in the program, are only accessible when the

procedure in which they were declared is active. Fx will implicitly determine the
appropriate scope, or an identifier's scope can be explicitly stated when necessary.

Fx Reference M anual

74 Command Arguments

I mplicit Scoping

When identifiers are program specific items, Fx determines the appropriate scope using
two sets of scoping information: the actual scope and the current scope. A program's
actual scope is the source line, procedure name and source file which contain the next
assembly language instruction to be executed, or the last assembly language instruction
executed if a core file is being examined. A program's current scope is the filename,
procedure name and source line which appear in the Fx status display.

By default, the current scope is identical to the actual scope. However, the current scope
may be changed with the scope, View, and view commands listed in Chapter 9. Fx will
use the procedure name defined by the current scope for searching the program's symbol
table for local variables, and the file defined by the current scope when searching the
program's symbol table for static variables and static functions.

Explicit Scoping

When necessary, it is possible to explicitly specify the scope for local variables. This
allows for multiple activations of the same procedure. The syntax for explicitly scoping
local variablesis asfollows:

procedure name { (level)} =>variable name

where procedure name is the name of the procedure where the local variable is
declared.

level is an integer constant and specifies a particular instance of the specified
procedure in the current chain of program execution. Leve zero refers to the
most recent instance of the procedure, level one refers to the second most
recent instance, and so on. If not specified, level defaultsto zero.

variable name is the name of thelocal variable.

For example, if the subroutine sub has been called recursively three times resulting in three
instances of sub in the current chain of execution, the following commands will display the
value of the variablei ndex for each instance of sub.

print sub=>(2)i ndex
print sub=>(1)i ndex
print sub=>(0)i ndex

Specifying Symbols
This section discuses the interpretation of variable and procedure names.

Symbol Names

Fx Reference M anual

Command Arguments 75

The first character of a symbol name must be an upper or lower case letter or an under-
score. The remaining characters can be upper or lower case letters, digits, underscores, or
dollar signs. A symbol name is terminated by the first occurrence of a character which is
not one of the above. Symbol names are significant to 31 characters.

The Fx contral variable $case controls case sensitivity during symbol table searches. This
variable is initialy set to "both" causing symbol table searches to be case senstive.
However, it can be set to "lower" or "upper" by entering the change command. When
$case is st to "lower”, the symbol name extracted from the command line will be folded
to lower case before searching the program's symbol table. When $case is set to "upper”,
the symbol name will be folded to upper case before the search is performed.

On systems where convention dictates the prepending of a special character to symbol
names, the Fx control variable $leading can be used to diminate the need to enter this
character every time a symbol name is used. For example, if convention dictates that
symbol names must have a leading underscore, setting the value of $leading to " " will
cause Fx to strip a single leading underscore from any name in a program's symbol table,
as shown below.

change $leading = "_"

FORTRAN Symbols

This section describes the FORTRAN data types and symbols understood by Fx and
discusses the scoping conventions for each symbol type, the indexing of FORTRAN
arrays, and the syntax for specifying character substrings.

FORTRAN Data Types

Fx supports the following FORTRAN data types:

| NTEGER* 1

| NTEGER* 2

I NTEGER

LCd CAL*1

LCA CAL*2

LOd CAL

REAL

DOUBLE PRECI SI ON
EXTENDED

COVPLEX

DOUBLE PRECI SI ON COMPLEX
COVPLEX* 24
CHARACTER

RECORD

The |INTEGER*1, INTEGER*2, LOG CAL*1, and LOGQ CAL*2 data types only apply to
variables. There is no way to specify an | NTEGER* 2 constant. If a constant is assigned to
an | NTEGER* 2 variable usng the change command, the constant will be converted before
the assgnment is performed. The data types EXTENDED and COVPLEX*24 are only
supported on machines that perform extended precision arithmetic in hardware.

Fx Reference M anual

76 Command Arguments

FORTRAN Subroutines and Functions

FORTRAN subroutine and function names are global to the entire program and are
accessible at any time during a debugging sesson. FORTRAN statement functions are
invisble to Fx and cannot be specified as command arguments.

FORTRAN Common Blocks

The names of FORTRAN common blocks are global to the entire program and are
accessible any time there is a process or core file active. When used as arguments to
commands, the contents of common blocks are assumed to be integers.

FORTRAN Local Variables and Procedure Arguments

The names of FORTRAN local variables and procedure arguments are always local to the
procedure or function in which they were declared regardless of their actual location in
program memory. Local variables and arguments are accessible when the procedure in
which they are declared is defined by the current scope. They may also be explicitly
scoped.

FORTRAN Array Indexing

FORTRAN arrays are indexed using the conventions of the FORTRAN language.
Indexing is performed in column major order and array indices are specified usng standard
FORTRAN syntax. Individual array indices may be specified as constants or as
expressions involving variables, constants, and operators.

Unsubscripted array names may be specified as arguments to the print command causing
every element of the array to be displayed. Note that assumed size arrays cannot be
displayed in this manner because the size of the last dimension is unknown. The following
examplesillustrate FORTRAN array indexing.

array(1)
array(i, 2)
array(i +4, k+3, m

FORTRAN Character Substrings

Substrings of character variables and character array eements may be specified using
standard FORTRAN syntax. The substring expressions can be simple integer constants or
more complicated expressions involving variables, constants and operators. The following
examplesillustrate character substring syntax.

charvar (1: 6)

charvar (i:j)

chararray(1,2)(i+1:7)

C Symbols

Fx Reference M anual

Command Arguments 77

This section describes the C data types and symbols understood by Fx, and discusses the
scoping conventions for each type, C array indexing, dereferencing pointer variables, and
referencing members of structures and unions.

C Data Types

Fx supports the following C data types:

char
unsi gned char
short int

unsi gned short int
i nt

unsi gned i nt

| ong

unsi gned | ong

fl oat

doubl e

Note that many C compilers will not make a distinction between i nt and | ong when
producing program symbol information.

C Functions

C function names are global to the entire program unless explicitly declared with the
reserved word st at i ¢c. Non-static functions are accessible at any time during a debugging
session. Static functions are only accessible when the file in which they were declared is
defined by the current scope.

C Extern Variables

C variables declared with the reserved word ext ern are accessible any time there is a
process or core file. If no type information is available for external variables, the typei nt
will be assumed.

C Static Variables

The scoping of variables declared with the reserved word st at i ¢ follows the conventions
of the C language. If avariableis declared outside of a function, it is only accessible when
the filein which it was declared is defined by the current scope. If isit isdeclared inside a
function, it is only accessible when that function is defined by the current scope. Static
variables declared inside of functions may also be explicitly scoped.

C Automatic Variables

Automatic variables are only accessible while the function in which they were declared is
defined by the current scope. Automatic variables may also be explicitly scoped. Note that
Fx does not digtinguish between automatic variables declared at the beginning of a
function and those declared within a block of the function's statements.

C Array Indexing and Pointer Dereferencing

Fx Reference M anual

78 Command Arguments

Array indexing is performed using the conventions of the C language. Indexing is
performed in row maor order and indices are specified using standard C syntax. Individual
indices can be specified as integer constants or as expressions involving variables,
constants, and operators.

Unsubscripted array names can be specified as arguments to the print command causing
every dement of the array to be displayed. The following examples illustrate C array
indexing

array[1]

array[i][1]
array[i +1][] +1]

Pointer variables may be dereferenced using the *' operator, or they may be indexed asiif
they had been declared as one-dimensional arrays. Consider the following C program
fragment:

int array[10];
int *aptr;
aptr = array;

The following sets of commands will produce equivalent output.

print *aptr
print aptr[O]

print *(aptr+8)
print aptr[2]

Note that Fx does not multiply the constant 8 by the size of an integer before performing
the addition.

C Structure and Union M embers

Structure and union members may be specified as command arguments by using the "->"
and "." operators. The names of entire structures and unions may be specified as
arguments to the print command causing every member of the structure or union to be

displayed.
Specifying Constants

Constant arguments may be specified in one of the following forms: integer, floating point,
complex, or character. The following sections provide details on each of these constant

types.

Integer Constants

Integer constants can be entered in decimal, binary, octal, or hexadecimal form.

Fx Reference M anual

Command Arguments 79

Decimal Constants

Decimal constants consist of an optional leading sign followed by a string of decimal digits
[0-9]. Note that if a Sign is not specified and the first digit is a zero, the constant will be
interpreted as an octal integer as described below. The following are valid decimal
constants:

10
-22
+100

Binary Constants

Binary constants consist of the letter b or the letter B followed immediately by a string of
binary digits [0-1] delimited by single quotation marks or apostrophes. If desired, spaces
may be included in the string of digits. The following are valid binary constants:

b' 101
B' 111 111

Octal Constants

Octal constants consist of the letter o or the letter O followed immediately by a string of
octal digits [0-7] delimited by single quotation marks or apostrophes. If desired, spaces
may be included in the string of digits. Octal constants can also be specified using the form
familiar to C programmers, where an octal constant consists of a leading digit zero
followed by a string of octal digits[0-7]. The following are valid octal constants:

o' 555
0555

Hexadecimal Constants

Hexadecimal constants consist of the letter z or the letter Z followed immediately by a
string of hexadecimal digits [0-9, A-F or af] ddimited by single quotation marks or
apostrophes. If desired, spaces may be included in the string of digits. Hexadecimal
constants can aso be specified using the form familiar to C programmers, where an
hexadecimal constant consists of the leading digit zero followed the letter x or the letter X
and a gtring of hexadecimal digits [0-9, A-F or af]. The following are valid hexadecimal
constants:

z' 3F
Ox3f

Floating Point Constants
A floating point constant consists of an optional sign and string of decimal digits which

contains a decimal point. A floating point constant may have an exponent. An exponent is
specified by the letter 'E' or the letter 'D' followed by an optional sign and a string of

Fx Reference M anual

80 Command Arguments

decimal digits. If an exponent character is specified and the fractional portion of the
constant is zero, the decimal point may be omitted.

A floating point constant is initially converted to IEEE 96 bit extended precision
regardless of the exponent character. After conversion to extended precision, the constant
will then be converted to double or single precison depending upon the specified
exponent character. Floating point constants specified with a 'D' exponent character will
be converted to double precision. Floating point constants specified with an 'E' exponent
character, or without an exponent character, will be converted to single precison. The
following are valid floating point constants:

12.0

-12. 999

12. 999E12
12.9999D- 12

Complex Constants

A complex constant consists of a left parenthesis, followed by a pair of floating point
constants separated by a comma, followed by a right parenthesis. Double precision
complex constants are specified including a 'D' exponent character in one or both of the
floating point constants. The following are valid complex constants:

(12.0, 12. 0)
(12. 9999E- 12, - 12. 9999E10)
(100. 0DO, 200. ODO)

Character String and C Character Constants

Character string constants are strings of ASCII characters delimited by either apostrophes
or quotation marks. The deimiting character may be included in the string itsef by
representing it with two successive ddimiting characters. The following are examples of
valid character string constants:

"hell o worl d" "hello worl d'
"Arerica's finest" "Arerica''s finest'

If desired, special escape sequences may be embedded in character string constants by
using the backdash followed immediately by one of the charactersin the following table.

Escape Sequence Meaning

\n Newline

\ 't Tab

\r Carriage return

\f Form feed

\b Backspace

\\ Backdash

\'nnn octal value specified by nnn

Fx Reference M anual

Command Arguments 81

The Fx control variable $escchar controls whether or not escape sequences are
interpreted as described above. When set to zero, which is the default, escape sequences
will not be interpreted. $escchar must be set to a non zero value using the change
command before escape sequences will be interpreted.

C character constants are specified as one-byte character strings. The Fx control variable
$escchar must be set to a non-zero value in order to use escaped charactersin C character
constants.

Specifying Registers

Registers are entered using the names accepted by the system assembler. In order to
distinguish them from symbol names, they must be prefixed with the character "$". When
used in expressions, the data type of registers is assumed to be integer. However, if
dedicated floating point registers are available they will be typed appropriately. The
contents of registers are always retrieved from the actual scope and are available whenever
aprocess or corefileisactive.

Expression | nterpretation

Many Fx commands accept expressions as arguments. Expressons can be smple scalar
values, such as a numeric constant or single variable name, or can consst of multiple
operands combined with the supported operators for the current expression language.

Current Expression L anguage

The current expression language is determined by the contents of the Fx control variable
$explang. By default, this variable is set to "automatic" causing the current expression
language to be determined by examining the extenson of the file name defined by the
current scope. When this file name ends in the characters ".c". the current expression
language is C. When the extension is ".f* or ".for", the current expresson language is
FORTRAN. If desred, the value of this variable may be explicitly set to "C" or
"FORTRAN" with the change command, allowing expression evaluation in ether of these
languages regardless of the current scope.

Default Expression Language

When the value of $explang is set to "automatic* and it is impossible to determine the
appropriate language from the current scope, expressions will be evaluated in the language
defined by the Fx control variable $deflang. By default, this variableis set to "C" however
it may be set to "FORTRAN" using the change command.

Supported Language Operators
When specifying expressions as arguments to debugger commands, operands may be

combined using the operators of the current expresson language. Type conversion
between operands and operator precedence follow the conventions of the expression

Fx Reference M anual

82 Command Arguments

language. Note that parentheses may be used to force a specific order of evaluation
regardless of the current expression language.

FORTRAN Operators

The following table lists the supported FORTRAN operators.

FORTRAN operators

Binary NEQV., .EQV., .OR,, .AND., .GT.}, .GE.1, NE.1, [EQ.},
LEL LT - + % [, ** =

Unary +, -, .NOT., @?

1. The operators .GT., .GE., .NE., .EQ., .LE., and .LT. may also be
gpecified by >, >=, <>, ==, <=, and < respectively.

2. The @ operator is used to specify the "contents of" and can be used to
provide an additional level of dereferencing for FORTRAN symbals.

C Operators

Thefollowing table lists the supported C operators.

C operators

Blnary &lll%l* 1+1-1A1-1<1:1>1_>1<<1>>,::,! :,&& ,I|,<:,>:

Unary ~ - &%+

FORTRAN Intrinsic Functions

In addition to the language operators listed above, Fx aso provides the numeric
FORTRAN intrinsic functions for use in expressions. These include the type conversion
functions such as FLOAT and INT, the trigonometric functions such as SIN and TAN,
and the bit manipulation functions defined by the DOD military standard MIL-STD-1753
such as IOR. The intrinsic functions are available regardless of the current expression
language. References to intrinsic functions are distinguished from program entry points
with the same name by the presence of an argument list.

Value Expressions

Vaue expressions evaluate to a single numeric value or character string that can be
printed, passed as an argument to an intrinsic function or specified as the value to assign
to a variable usng the change command. Character string expressions are limited to single
character string constants, character variables, character array eements, or character
substrings. No operators are supported for combining character operands.

Fx Reference M anual

Command Arguments 83

When all operands in a value expression are of the same data type, the type of the
expression is the same as the type of the operands. When an expression involves operands
with different data types, automatic conversion between data types occurs. The data type
of the expression result is the data type of the highest operand as defined by the current
expression language.

Address Expressions

Address expressions are a subset of possible value expressions and are used to refer to
locations in a program's memory space. Since computers are not capable of addressing
memory with floating point numbers or character strings, address expressions should only
involve integer operands. Although it is possible to specify other types of operands, an
error will be reported if the type of an address expression is not integer.

Operand Inter pretation

Expression operands are interpreted differently depending upon whether they are used in
value expressions or address expressions. The distinction between operand interpretation
is generally transparent when debugging programs. Fx is designed to interpret an operand
in the manner which makes the most sense for a particular command. For example, when
the name of an entry point is used as an argument to the break command, Fx will use the
address of the specified procedure as the address of the breakpoint.

The interpretation of any argument can be overridden by using source language operators
and the FORTRAN intrinsic functions VAL and LOC. Consider the following print
commands.

print main
print LOC(rmain)

Thefirst print command will display the contents of the first memory location for the entry
point main. The second will show the address of the entry point main.

The following table lists the basic operands and the ways in which they will be interpreted
in value expressions and address expressions.

Fx Reference M anual

84 Command Arguments

Operand In value expressions In address expressions
constant numeric value numeric value

register name | register contents register contents!
variablename | variable contents variable contents?

procedure name | contents procedure'sfirst | procedure address
location when specified
alone, procedure address
when combined with
operators

control variable | variable contents variable address3

1. When aregister name is used with the monitor command, the contents of
the specified register name will be monitored for change. Thisis the only
time aregister is consdered to have an address.

2. The dump and monitor commands will use the variable address when
specified alone and the variable contents when used in expressions.

3. Fx contral variables can only appear in address expressions when used
with the change command.

Fx Reference M anual

85

Chapter Nine

Command Reference

This chapter describes each Fx command. In order to assst in finding a particular
command, the commands are presented in aphabetical order and the name of each
command is followed by a short description of its purpose.

Executing system commands

Description:
The ! command suspends a debugging session and executes another command or
program. After the command or program finishes, the debugging session is
resumed at the point where it was suspended.

Usage:
I command line

where command line is the name of the command or program followed by its
arguments as they would be typed at the shell prompt. All characters
following the ! are passed directly to the shell.

Example:
The following command suspends the current debugging session and runs the text
editor vi(1) on thefilesource. f:

! vi source.f

Notes:
When entering multiple Fx commands on the same command ling, it is permissible
to precede the! command by other debugger commands.

In order to use the ! command to recompile the program you are currently
debugging, you must use the kill command before recompiling. After your
program has been compiled, you must use the reinit command to make Fx aware
of any changes that you made to your program.

Related Commands:
kill, reinit

Fx Reference M anual

86 Command Reference

associate Executing commands at breakpoints

Description:
The associate command allows debugger commands to be executed when a
breakpoint stops program execution. When execution stops at the specified
breakpoint, the commands will be executed as if they had been entered from the
command line. After the commands have been executed, further commands may be
entered.

Usage:
associate address expression "command"”
associate { "filename"} {:line number } "command "
associate { procedure name } {:line number} "command "

where address expression evaluates to the address of an instruction in the
program. Useful address expressions for specifying breakpoints include the
name of an entry point, the name of an entry point plus an integer offset, or
an absolute address specified as an integer constant.

command is any valid debugger command. Multiple commands may be
specified by separating them with semi-colons.

filename is the name of a source file which is part of the program being
debugged. If filename is not specified, the file containing the current source
linewill be used.

line number is an integer constant. If the specified line number does not
correspond to an executable source line but is within a procedure in the
specified file, the breakpoint will be set on the next executable source line
greater than line number. If the specified line number is between
procedures, the breakpoint will be set on the nearest executable source line.
If line number is not specified, the first executable source line in the
specified file will be used.

procedure name is the name of a procedure in the program being
debugged. If no line number is specified, the breakpoint will be set on the
first instruction of the specified procedure. If the specified line number is
one, the breakpoint will be set on the first executable source line of the
specified procedure. If a line number other than one is specified, the
command is equivalent to "break filename :line number”, where filename is
the name of the file which contains the specified procedure.

Abbreviation:
a

Example:
The following command associates a command list with a breakpoint set on the
first executable source line of the procedure subone:

Fx Reference M anual

Command Reference 87

associ ate subone:1 "print 'At subone'; registers”

Notes:
If a breakpoint is currently set at the specified location, the command list will
replace any command list currently associated with it. Otherwise, the breakpoint
will be set asif it had been specified with the break command.

Adding the continue command at the end of the list of commands associated with
a breakpoint will cause execution to automatically resume after the other
commands have been executed.

If an error occurs during execution of a command associated with a breakpoint,
any other commands associated that breakpoint will be ignored.

Related Commands:
break, delete, Delete, list breakpoints

break Setting breakpoints

Description:
The break command is used to place a breakpoint at a given location in the
program being debugged. The location can be any valid address expression. The
location may also be specified as a file relative source line number or as the first
executable source line in a procedure.

Usage:
break {{address expression} {,skip count } }
break {{"filename"} {:line number } {,skip count }}
break {{procedure name} {:line number} {,skip count }}

where address expression evaluates to the address of an instruction in the
program. Useful address expressions for specifying breakpoints include the
name of an entry point, the name of an entry point plus an integer offset, or
an absolute address specified as an integer constant.

skip count is an integer constant and represents the number of times the
breakpoint is to be ignored before program execution is stopped. If skip
count is not specified, a value of zero will be used causing program
execution to stop thefirst time the breakpoint is encountered.

filename is the name of a source file which is part of the program being
debugged. If filename is not specified, the name of the file containing the
current source line will be used.

line number is an integer constant. If the specified line number does not
correspond to an executable source line but is within a procedure in the
specified file, the breakpoint will be set on the next executable source line

Fx Reference M anual

88 Command Reference

greater than line number. If the specified line number is between
procedures, the breakpoint will be set on the nearest executable source line.
If line number is not specified, the first executable line in the specified file
will be used.

procedure name is the name of a procedure in the program being
debugged. If no line number is specified, the breakpoint will be set on the
first instruction of the specified procedure. If the specified line number is
one, the breakpoint will be set on the first executable source line of the
specified procedure. If a line number other than one is specified, the
command is equivalent to "break filename :line number”, where filename is
the name of the file which contains the specified procedure.

Abbreviation:
b

Example:
The following command sets a breakpoint on the location specified by the address
expression mai n+0x50:

break nai n+0x50

The following command sets a breakpoint on the seventh line of the file
source. f:

break "source.f":7

The following command sets a breakpoint on the first executable line of the
procedure subone. A skip count of two is specified, so program execution will
not stop until the third time the breakpoint is encountered.

break subone: 1, 2

Notes:
The number of times a breakpoint has been skipped is reset to zero each time
program execution is restarted with the run command.

Related Commands:
associate, delete, Delete, list breakpoints

change Modifying variables

Description:
The change command is used to modify the contents of registers, variables,
program memory, and Fx control variables.

Usage:
{change} address expression = value expression

Fx Reference M anual

Command Reference 89

where address expression evaluates to the address of a memory location, a
register, or a debugger variable.

value expression specifies the new value to assign to address expression.

Abbreviation:
address expression =value expression

Example:
The following command changes the value of the variablei to 10:

change i =10

The following command changes the tenth element of the floating point array
fp_array t03.0:

change fp_array(10) = 3.0

Notes:
Type coercion will be performed where necessary and possible. For example, it is
permissible to assign an integer constant to a floating point variable. However,
attempts to assign a floating point constant to a character variable, and vice-versa,
will result in an error.

It is not possible to assign values to entire arrays, structures, or unions with the
change command.

Related Commands:
scope

close Closing Fx windows

Description:
The close command removes a debugger window from the screen.

Usage:
close { window name}

where window name is the debugger command which created the window. If
window name is not specified, the last opened window will be closed. If
window name specifies a window which is not currently open, nothing will

happen.

Abbreviation:
cl

Example:
The following command closes awindow created by the list file command:

close list file

Fx Reference M anual

90 Command Reference

The following command closes a window created by the print command:

cl ose print

Notes:
It isnot possible to close the standard source window.

Related Commands:
dynamic, keep, size, update

continue Resuming program execution

Description:
The continue command resumes execution of the program being debugged. If
desired, a temporary breakpoint may be specified. When specified, the location of
the temporary breakpoint can be any valid address expression, afile relative source
line, or the first executable source line of a procedure. Execution continues until
the temporary breakpoint is encountered, a breakpoint is encountered, an error
occurs, amonitor stops program execution, or the program runs to compl etion.

Usage:
continue { address expression}
continue {{"filename"} {:line number}}
continue {{procedure name } {:line number}}

where address expresson evaluates to the address of an ingtruction in the
program. Examples of useful address expressions include the name of an
entry point, the name of an entry point plus an integer offset, or an absolute
address specified as an integer constant.

filename is the name of a source file which is part of the program being
debugged. If filename is not specified, the name of the file containing the
current source line will be used.

line number is an integer constant. If line number is not specified, the first
executable source line in the specified file will be used. An error will be
reported if the specified line number does not correspond to an executable
line

procedure name is the name of a procedure in the program being
debugged. If no line number is specified, execution will continue until the
first instruction of the specified procedure. If the specified line number is
one, execution will continue until the first executable source line of the
specified procedure is encountered, otherwise the command is equivalent
to "continue filename :line number", where filename is the name of thefile
which contains the specified procedure.

Fx Reference M anual

Command Reference 91

If no arguments are specified, execution will continue until a breakpoint is
encountered, a monitor evaluates true, an error occurs, or the program
runs to compl etion.

Abbreviation:
c

Example:
The following command resumes execution of the program being debugged until
the location specified by the address expression subone+0x50 s encountered:

conti nue subone+0x50

The following command resumes execution of the program being debugged until
thefirst executable source line of procedure subone is encountered:

conti nue subone: 1

Related Commands:
go, Return

Delete Removing all breakpoints

Description:
The Delete command is used to remove all breakpoints from a program. For the
description of a command which ddetes specific breakpoints, see the delete
command

Usage:
Delete

Abbreviation:
D

Related Commands
associate, break, delete, list breakpoints

delete Removing specific breakpoints

Description:
The delete command is used to remove one or more breakpoints from a program.
For a description of a command which removes all breakpoints, see the Delete
command.

Usage:
delete { breakpoint}

where breakpoint is any of the valid breakpoint specifications. See the break
command for a description of valid breakpoint specifiers. If breakpoint is

Fx Reference M anual

92 Command Reference

not specified, the debugger will display each active breakpoint and ask if it
should be deleted. If a "Y" or a"y" is entered, the breakpoint will be
deleted. If anything elseis entered, the breakpoint will be left in place. Note
that you do not have enter a carriage return after responding.

Abbreviation:
d

Example:
The following command deletes a breakpoint that was previoudy set on the first
executable source line of the procedure subone.

del et e subone: 1

Related Commands:
associate, break, Delete, list breakpoints

dump Displaying program memory

Description:
The dump command displays program memory starting at a specified address.

Usage:
dump address expression {#format { repeat count} }

where address expression evaluates to an integer address specifying a location in
program memory.

format is any of the legal display formats. Display formats are described in
the section on the print command. If format is not specified, the contents
of the specified location will be displayed as a four byte hexadecimal
number.

repeat count is an integer constant specifying the number of values to
display. When a repeat count greater than one is specified, the specified
address will be incremented by the size of the specified format.

Abbreviation:
du

Example:
The following command displays the contents of the memory location 0x402790:

dunp 0x402790

The following command displays the contents of the memory location specified by
the contents of the register $r 1:

dunp $rl

Fx Reference M anual

Command Reference 93

The following command displays the contents of four consecutive memory
locations starting at the address of the variablei ndex1:

dunp index1# 4

Related Commands:
change, print, scope, section, watch

dynamic Automating Fx windows

Description:
The dynamic command causes the command which created a specified window to
be re-executed after each subsequent debugger command. This command is useful
only with the character interface.

Usage:
dynamic { window name}

where window name is the command which created the window. If window name
is not specified, the last opened window will be made dynamic. If window
name specifies a window which is not currently open, nothing will happen.

Abbreviation:
dy

Example:
The following commands will display the register window and cause its contents to
be displayed after each subsequent command:

register
dynami c register

Notes:
The dynamic command has no affect when used while debugging with the Fx
graphical interface.

Related Commands:
close, keep, shift, size, watch

exter nal Executing procedures out of sequence

Description:
The external command allows program procedures and functions to be executed
out of sequence. Arguments may be passed and function results are displayed
when a function returns.

Usage:
external procedure name {(argl,...,argN)}

Fx Reference M anual

94 Command Reference

where procedure name is the name of a procedure or function in the program
being debugged.

argl,...,argN are the arguments to the specified procedure. Arguments can
be the names of variables accessible from the current scope, constants, or
value expressons The debugger does not insure that the specified
arguments agree in type or number with what the procedure expects. The
debugger will match the calling conventions of the procedur€'s source
language.

Abbreviation:
ex

Example:
The following command executes the function sun8real s with the arguments
var one, 2.0, SIN(1.0):

ext ernal sunBreal s(varone, 2.0, SIN(1.0))

Assuming that the variable varone contains the value 1.0, the debugger will
display the return value as follows:

Ext ernal procedure sunBreals returns: 3. 84147

Notes:
Use of the external command requires that the program being debugged has been
linked with the library libg.a or that the operating system supports 88open OCS
.tdesc information.

If breakpoints have been installed in the procedure called with the external
command, execution will stop as if the procedure had been entered through normal
program execution. However, only one external command can be active at a given
time. An attempt to execute a second external procedure before the first one
returnswill result in an error.

Passing character string constants and entire structures and unions by value is not
supported by the exter nal command.

Related Commands:
kill, run

filestatus Displaying FORTRAN 1/O unit information

Description:
The filestatus command is used to display information about all connected and
preconnected FORTRAN units. For units explicitly connected with a FORTRAN
OPEN statement, this command displays the unit number, file name, the state of
the ACCESS=, FORM=, ACTION=, STATUS= I/O control specifiers used to
connect the unit, and the current record number. For preconnected units, this

Fx Reference M anual

Command Reference 95

command displays the unit number, and the state of the ACCESS=, FORM=, and
ACTION= I/O contral specifiers.

Usage:
filestatus

Abbreviation:
f

Notes:
This command will only work for programs which use the Absoft Pro Fortran
runtime library.

go Resuming program execution

Description:

The go command resumes execution of the program being debugged. If desired, a
temporary breakpoint may be specified. When specified, the location of the
temporary breakpoint can be any valid address expression, a file relative source
lineg, or the first executable source line of a procedure. All breakpoints are ignored
during execution of this command. Execution continues until the temporary
breakpoint is encountered, an error occurs, a monitor stops program execution, or
the program runs to completion.

Usage:
go { address expression}
go {{"filename"} {:line number}}
go {{procedure name } {:line number}}

where address expresson evaluates to the address of an ingruction in the
program. Examples of useful address expressions for the go command
include the name of an entry point, the name of an entry point plus an
integer offset, or an absolute address specified as an integer constant.

filename is the name of a source file which is part of the program being
debugged. If filename is not specified, the name of the file containing the
current source line will be used.

line number is an integer constant. An error will be reported if the specified
line number does not correspond to an executable source line. If not
specified, the first executable line for the specified file will be used.

procedure name is the name of a procedure in the program being
debugged. If no line number is specified, execution will continue until the
first instruction of the specified procedure. If the specified line number is
one, execution will resume until the first executable line for the specified
procedure is encountered, otherwise the command is equivalent to "go

Fx Reference M anual

96 Command Reference

filename :line number”, where filename is the name of the file which
contains the specified procedure.

If no arguments are specified, execution will continue until an error occurs,
amonitor evaluatestrue, or the program runs to completion.

Abbreviation:
g

Example:
The following command resumes execution of the program being debugged until
the location specified by the address expression subone+0x50 IS encountered :

go subone+0x50

The following command resumes execution of the program being debugged until
thefirst executable source line of procedure subone is encountered:

go subone: 1

Related Commands:
continue, Return

help Getting Help

Description:
The help command is used to access the on line help provided by Fx. When
specified with no arguments, a brief introduction to the help system will be
displayed including the specific commands and keywords for which hep is
available.

Usage:
help
help command

help keyword

Abbreviation:
h

Example:
The following command displays alist of available Fx commands:

hel p comands

The following command displays help for the break command:
hel p break

| nstruction Sepping over assembly language procedures

Fx Reference M anual

Command Reference 97

Description:
The Instruction command executes one or more assembly language instructions,
starting with the next instruction to be executed. If one of the instructions to be
executed is a call to a procedure, execution of the program will continue until the
ingtruction following the procedure call is encountered or until a breakpoint is
encountered in the procedure which is being treated as a single instruction.

Usage:
I nstruction { count }

where count is an integer expression which specifies the number of instructions to
execute. If count is not specified, oneingtruction will be executed.

Abbreviation:
|

Example:
The following command executes the next five instructions of the current
procedure, treating any procedure calls as single instructions:

Instruction 5

Notes:
The Instruction command only stops for breakpoints set in a procedure which is
being treated as a single instruction. Breakpoints set in the current procedure will
be ignored.

Related Commands:
instruction, step, Step

Instruction Executing single instructions

Description:
The instruction command executes one or more assembly language instructions,
starting with the next instruction to be executed. If one of the instructions to be
executed isa call to a procedure, the procedure will be entered.

Usage:
instruction { count }

where count is an integer expression which specifies the number of instructions to
execute. If count is not specified, oneingtruction will be executed.

Abbreviation:
i

Example:
The following command executes the next five instructions of the current
procedure:

Fx Reference M anual

98

Command Reference

instruction 5

Notes:
Theinstruction command ignores all breakpoints.

Related Commands:
I nstruction, step, Step

keep Causing Fx windows to remain visible

Description:
The keep command causes the last opened window to remain on the screen during
subsequent commands.

Usage:
keep

Abbreviation:
k

Notes:
The keep command has no affect when used while debugging with the Fx
graphical interface.

Related Commands:
close, dynamic, size

kill Terminating the current program

Description:
The kill command kills the current process being debugged without exiting the
debugger.

Usage:
kill

Abbreviation:
ki

Notes:
The kill command is provided so that a program may be recompiled using the !
command without leaving the debugger. It is not necessary to use the Kkill
command before terminating a debugging sesson with the quit command or when
restarting program execution with the run command as both of these commands
implicitly kill the current process.

Related Commands:
I reinit

Fx Reference M anual

Command Reference 99

list ascii Displaying ASCI| table

Description:
The list ascii command displays a table of printable ASCII characters and their
hexadecimal numeric representations.

Usage:
list ascii

Abbreviation:
la

list breakpoints Displaying current breakpoints

Description:
The list breakpoints command is used to display all currently active breakpoints,
any commands associated with them, their skipcounts, and the number of times
they have been encountered without halting program execution.

Usage:
list breakpoints

Abbreviation:
I b

Related Commands:
associate, break, delete, Delete

list control Displaying Fx control variables

Description:
The list control command displays a lig of al currently defined Fx control
variables and their current values.

Usage:
list control

Abbreviation:
lc

Notes:
The contents of individual Fx control variables can aso be displayed with the print
command.

Related commands:
change, print

Fx Reference M anual

100 Command Reference

list entries Displaying entry point information

Description:
Thelist entries command displays the names of selected program entry points, the
type of result they return, and their source file and line number. If the source file
and line number is not available, the address of the first ingruction for an entry
point will be displayed.

Usage:
list entries{"regular expression"}

where regular expression specifies a pattern to match againg al the entry point
names in the program being debugged. If not specified, al entry point
names will be displayed. A complete discussion of regular expressions can
be found in ed(1). Several useful regular expressions are demonstrated in
the examples below.

Abbreviation:
le

Example:
The folowing command will list all entry points with names containing the
charactersf un:

list entries "fun"

The following command will list al entry points with names beginning with the
charactersf un:

list entries "~fun"

The following command will list al entry points with names ending with the
charactersf un:

list entries "fun$"

Notes:
The Fx control variable $elist determines whether the list entries command
displays information about all program entry points or only the entry points with
full symbol information. By default, this variable is set to zero causing the list
entries command to skip any entry points without full symbol information. Setting
$elist to a non-zero value with the change command will cause all program entry
points to be listed.

The Fx control variable $lsort determines whether or not the list of entry points
will be sorted. By default, this variable is set to one causing the list to be sorted.
For large programs, sorting the list of entry points may take considerable time.
Setting $lsort to zero with the change command will speed execution of this
command.

Fx Reference M anual

Command Reference 101

Related Commands:
list globals, list locals, list statics

list file Displaying any file
Description:
The list file command alows any file to be examined without leaving the
debugger.
Usage:

list file "filename"
where filename isthe name of thefileto display.

Abbreviation:
| f

Example:
The following command displays the contents of the includefile sour ce. h:

list file "source.h"

Notes:
Thelist file window will remain on the screen until the close command is used to
remove it.

Related Commands:
close, next , previous, search, size, shift

list globals Displaying global symbol information

Description:
The list globals command displays the names of sdlected global variables for the
program being debugged along with their types and locations.

Usage:
list globals{"regular expression"}

where regular expression specifies a pattern to match against the global variable
names in the program being debugged. If not specified, al global variables
will be displayed. A complete discussion of regular expressions can be
found in ed(1). Several useful regular expressions are demonstrated in the
examples bel ow.

Abbreviation:
lg

Example:

Fx Reference M anual

102 Command Reference

The following command will list al global variables with names containing the
characters gl ob:

list globals "glob"

The following command will list al global variables with names beginning with the
characters gl ob:

list globals ""glob"

The following command will list al global variables with names ending with the
characters gl ob:

list globals "gl ob$"

Notes:
The Fx control variable $glist determines whether the list globals command
displays information about all global variables or just the global variables whose
data type is known. By default, this variable is set to zero and the list globals
command will only display global variables with defined data type. To display all
global variables, set the value of $glist to one with the change command.

The Fx control variable $lsort determines whether or not the list of global
variables will be sorted before being displayed. By default, this variable is set to
one causing the list to be sorted. For large programs, sorting the list may take a
considerable amount of time. Setting $lsort to zero with the change command will
speed execution of this command.

Related Commands:
list entries, list locals, list statics

list locals Displaying local variable information

Description:
The list locals command displays the names of sdlected local variables in the
current procedure along with their types and locations.

Usage:
list locals {"regular expression"}

where regular expression specifies a pattern to match against the local variable
names for the current procedure. If not specified, all local variables will be
displayed. A complete discussion of regular expressons can be found in
ed(1). Several useful regular expressions are demonstrated in the examples
bel ow.

Abbreviation:
Il

Fx Reference M anual

Command Reference 103

Example:

The following command will list al local variables with names containing the
characters| oc:

list locals "l oc"

The following command will list all local variables with names beginning with the
characters| oc:

list locals ""l oc"

The following command will list al loca variables with names ending with the
characters| oc:

list locals "l oc$"

Notes:

The Fx control variable $lsort determines whether or not the list of local variables
will be sorted before being displayed. By default, this variable is set to one causing
the list to be sorted. For procedures declaring a large number of local variables,
sorting the list may take a considerable amount of time. Setting $lsort to zero with
the change command will speed execution of this command.

Related Commands:

list entries, list globals, list statics

list monitors Displaying current monitors

Description:

The list monitors command displays all currently active monitors with ther id
numbers and monitor expressions.

Usage:

list monitors

Abbreviation:

Im

Related Commands

monitor, unmonitor

list signal Displaying current signal status

Description:

The list signal command displays the action that will be taken when signals are
presented to your program.

Usage:

list signal

Fx Reference M anual

104 Command Reference

Abbreviation:
| s

Related Commands
signal

list statics Displaying static symbol information

Description:
The list statics command displays the names of sdected static variables defined in
the current sourcefile.

Usage:
list statics{"regular expression"}

where regular expresson specifies a pattern to match against the static variable
names for the current file. If not specified, all satic variables will be
displayed. A complete discussion of regular expressons can be found in
ed(1). Several useful regular expressions are demonstrated in the examples
bel ow.

Abbreviation:
I's

Example:
The following command will list al satic variables with names containing the
charactersst at :

list statics "stat"

The following command will list all static variables with names beginning with the
charactersst at :

list statics "“stat"

The following command will list all static variables with names ending with the
charactersst at :

list statics "stat$"

Notes:
The Fx control variable $dlist determines whether the list statics command
displays information about all static variables or just the static variables whose data
type is known. By default, this variable is set to zero causing the list static
command to display only the static variables with defined data types Setting $slist
to a non-zero value with the change command will cause all static variables to be
listed.

Fx Reference M anual

Command Reference 105

The Fx control variable $lsort determines whether or not the list of static variables
will be sorted before being displayed. By default, this variable is set to one causing
the list to be sorted. For files which declare a large number of static variables,
sorting the list may take a considerable amount of time. Setting $lsort to zero with
the change command will speed execution of this command.

Related Commands:
list entries, list globals, list locals

log Writing Fx commandsto a file

Description:
Thelog command is used to control logging of debugger commands to afile. Files
created by the log command can be played back by using the read command.

Usage:
log "filename "
log on
log off

where filename is the name of the file to store debugger commands in. This form
of the log implicitly turns on command logging.

on gpecifies that logging is to resume. If this command is issued without a
preceding log "filename" command, commands will be logged to a file
whose name will be constructed using the name of the executable program
being debugged with the characters".fx" appended

off turns off command logging until the next log "filename" or log on
command is issued.

Example:
The following command initiates logging of commands to a file named f xI og:

l og "fxlog"

Assuming that command logging has not been previousy enabled and that the
name of the executable program is a.out, the following command initiates logging
of commandsto afilenamea. out . f x:

| og on

Notes:
The debugger will only log commands which execute successfully. Commands
which contain spelling mistakes or reference symbols incorrectly will not be saved
inthelog file.

Related Commands:
read

Fx Reference M anual

106 Command Reference

monitor Sopping execution when a variable changes

Description:
The monitor command is used to ingtall a special form of breakpoint. Unlike
traditional breakpoints, which halt execution of a program when a specific
instruction is executed, monitors halt execution of a program when a relational
expression evaluates true. Monitors can be used to stop execution of a program
when a variable changes value, when it equals a specific value, when it is greater
than a specific value, or when it isless than a specific value.

Usage:
monitor address expression { : operator value expression }

where address expression evaluates to the address of a location in the program
being debugged or aregister name. Examples of useful address expressions
include the names of local and global variables and subscripted array
elements.

operator is one of the supported source language operators for the current
expression language.

value expression evaluates to a value to compare against the contents of
address expression .

If value expression and operator are not specified, the current contents of
address expression and the "not equal” operator for the current expression
language will be used.

Abbreviation:
m

Example:
The following commands ingtal a monitor on the variable chk flag and resume
execution. Since an operator and value expression are not specified, the monitor
will stop execution of the program when the value of chk_f | ag changes:

nmoni tor chk_flag
conti nue

As mentioned above, the preceding monitor command is equivalent to
monitor chk_flag : .NE chk _flag

when FORTRAN isthe current expression language, and

monitor chk _flag : !'= chk_flag

when C isthe current expression language.

Fx Reference M anual

Command Reference 107

The following command installs a monitor on the variable i ndex1. However, an
operator and value expression are specified, so this monitor will stop program
execution when the value of i ndex1 isgreater than 100:

monitor indexl : .GI. 100

Notes:

A monitor is automatically removed when it stops execution of the program.

Both address expression and value expression are evaluated when the monitor is
ingtaled. This meansthat a monitor command such as.

monitor array(i,j) : .NE array(i+1,j+1)

will calculate the address of dement array(i,j) and retrieve the value of e ement
array(i+1,j+1) when the monitor is installed. Subsequent changes to the
variablesi ,j andarray (i +1, j +1) will not affect the monitor.

The monitor command does not resume execution of the program. After monitors
have been ingtalled, program execution must be resumed with the continue, go,
step, or Step commands. The continue and go commands behave differently when
monitors are active. Instead of allowing program execution to resume, they
repeatedly execute the command defined by the Fx control variable $mstep. By
default, this variable is set to step, causng monitors to be checked after each
source statement. This variable can be changed to Step, instruction, or
I nstruction.

The Fx control variable $mgrain determines how many times the command
contained in $mstep is executed before monitors are checked. The default value
for thisvariableis 1, but it can be set to any positive integer.

The following commands illustrate the use of the Fx control variables $mstep and
$mgrain. The result of these commands is that the value of i ndex1 will only be
checked after every four source statements and any procedure calls will be treated
asasngle statements:

nmoni t or i ndexl

change $nstep = "Step"
change $ngrain = 4
conti nue

Related Commands:

next

list monitor, unmonitor

Scrolling source windows

Description:

The next command is used to scroll the standard source window or list file
window forward by a specified number of lines.

Fx Reference M anual

108 Command Reference

Usage:
next {window name } {,number of lines}

where window name identifies the window to be scrolled. If not specified, the last
opened source window will be scrolled.

number of lines is an integer constant specifying the number of lines to
scroll. If number of lines is not specified, or zero is specified, the window
will be scrolled by the number of linesin the window.

Abbreviation:
n

Example:
The following command scrollsthe list file window forward six lines:

next list file, 6

Notes:
The next command has no affect when used with the Fx graphical interface.

It is only necessary to specify a window name when both the standard source
window and the list file window are present. Unlike other windows, the standard
source window is not created by a specific command. However, the standard
source window does have the name sour ce associated with it for use with window
commands. The following command scrolls the standard source window forward
ax lines

next source, 6

Related Commands:
list file, previous, view, View

output Displaying program output

Description:
The output command is used to display any terminal output produced by the
program being debugged.

Usage:
output

Abbreviation:
o]

Notes:
The output command has no affect when used while debugging with the Fx
graphical interface.

Fx Reference M anual

Command Reference 109

This command will generate an error if the -I option was used or if output has
been redirected to afile using the run command.

previous Scrolling source windows

Description:
The previous command is used to scroll the standard source window or list file
window backward by a specified number of lines.

Usage:
previous{ window name } {,number of lines}

where window name identifies the window to be scrolled If not specified, the last
opened source window will be scrolled.

number of lines is an integer constant specifying the number of lines to
scroll. If number of lines is not specified, or zero is specified, the window
will be scrolled by the number of linesin the window.

Abbreviation:
p

Example:
The following command scrolls the list file window back six lines:

previous list file, 6

Notes:
The previous command has no affect when used with the Fx graphical interface.

It is only necessary to specify a window name when both the standard source
window and the list file window are present. Unlike other windows, the standard
source window is not created by a specific command. However, the standard
source window does have the name sour ce associated with it for use with window
commands. The following command scrolls the standard source window forward
ax lines

next source,6

Related Commands:
list file, next, view, View

pr Int Displaying program variables

Description:
The print command displays the contents of program variables, registers, Fx
control variables, and can also be used to evaluate expressions containing these
items as well as constants, source language operators and FORTRAN intrinsic

Fx Reference M anual

110 Command Reference

functions. Entire arrays, structures and unions can also be displayed. The section
command is also available for displaying the contents of arrays.

Usage:
{print } value expression {# format}

where value expression specifies the value to be printed. Useful value expressions
include variable names, subscripted and unsubscripted array names,
structure and union names, and references to structure and union members.

format is one of the valid format specifiers listed in the table below. If
format is not specified, a format which is most appropriate for the type of
value expression will be used.

Display For mats:
Display formats are specified by a single character indicating the desired format.
Several of the display formats may be followed by a second character which
indicates the number of bytes to display in the specified format. The characters
used to represent sizes are: b (one byte), s (two bytes), and | (four bytes). The
following table lists the display formats which may be specified.

Character Default Sze Other Szes Vauedisplayed as

a 4 bytes ignored address of value
b 4 byes b,s| binary integer
C 1 byte ignored ASCII character
d 4 bytes b,s| decimal integer
e 8 bytes ignored double precision floating point
f 4 bytes ignored single precision floating point
o] 4 bytes b,s| octal integer
S $den ignored null terminated string
u 4 bytes b,s| unsigned decimal integer
X 4 bytes b,s| hexadecimal integer
Abbreviation:
value expression
Example:

The following command prints the contents of the variable var one in the format
most appropriate for its type:

print varone

The following command prints a single precision representation of Pi:

print 4.0%*ATAN(1.0)

The following command printsthe variablei nt var as a hexadecimal integer:

print intvar#x

Fx Reference M anual

Command Reference 111

Notes:
The only time the print must be explicitly specified is when printing the contents
of a variable whose name matches one of the debugger commands. For example, a
variable named cont i nue.

The Fx control variable $acount controls the maximum number of array e ements
to display when an unsubscripted array name is specified. The default value for this
variable is 100. However, it can be changed to any positive integer value using the
change command

The Fx control variable $union determines whether or not al members of a union
are displayed. By default, this variable is set to one so all members are displayed.
Setting $union to zero with the change command will cause only the first member
of aunion to be displayed.

The Fx control variable $slen controls the maximum number of characters printed
when using the s format. The default value for this variable is 80 but it can be
changed to any positive integer value using the change command.

The Fx control variable $ffmt controls the display format for single precison
values. The default value for this variable is "(1PG15.6E2)". However, it can be
changed to any legal FORTRAN format string suitable for writing a single
precision value with the change command.

The Fx control variable $efmt controls the display format for double precision
values. The default value for this variable is "(1PG24.15E3)". However, it can be
changed to any legad FORTRAN format string suitable for writing a double
precision value with the change command.

The Fx control variable $cmpfmt controls the the display format for FORTRAN
COMPLEX vaues. The default value for this variable is
"('(,1PG15.E2,,,1PG15.6E2,")")". However, it can be changed to any lega
FORTRAN format string suitable for writing a COMPLEX value with the change
command.

The Fx control variable $dcmpfmt controls the display format for FORTRAN
DOUBLE PRECISION COMPLEX values. The default value for this variable is
"('(",1PG24.E3,',',1PG24.6E3,"))". However, it can be changed to any legd
FORTRAN format string suitable for writing a DOUBLE PRECISION
COMPLEX value with the change command.

Related Commands:
dump, scope, section, watch

quit Ending a debugging session

Fx Reference M anual

112 Command Reference

Description:
The quit command terminates the current debugging session.

Usage:
quit

Abbreviation:
q

Related Commands:
I, kill, sleep

r ead Reading Fx commands from a file

Description:
The read command allows debugger commands to be read from a file. The file
may have been created as the result of usng the log commands, or can be created
by hand using a text editor.

Usage:
read {"filename"}

where filename is the name of a file which contains valid Fx commands. If
filename is not specified, afile name conssting of the executable object file
with the character ".fx" appended will be used.

If an error occurs while commands are being read from the specified file,
the remaining commands in the filewill be ignored.

Abbreviation:
rea

Example:
The following command will cause the debugger to execute the commands in the
filef xl og:

read "fxl og"

Notes:
It is permissible to nest read commands. That is, a file specified with the read
command may contain other read commands. It should be noted that use of this
feature may lead to infinite execution if the file used in a nested read command
contains aread command specifying the original file.

The Fx control variable $read can be used to suppress execution of display
commands, such as print and registers, which do not affect the state of the
program being debugged. By default, the value of $read is set to a non-zero value

Fx Reference M anual

Command Reference 113

causing all commands read from a file to be executed. To suppress execution of
display commands change the value of $read to zero.

Related Commands:
log

registers Displaying machine registers

Description:
The registers command is used display the current contents of all machine
registers.

Usage:
registers

Abbreviation:
r

Notes:
The contents of individual registers can be displayed in a variety of formats using
the print command.

reinit Switching programs to debug

Description:
The reinit command is used begin debugging a new program without terminating
and restarting Fx.

Usage:
reinit { executablefile} {-c corefile} {-P pathlist} {-p pathlist}

where executable file is the name of a program to begin debugging. If not
specified, the name of the last debugged program will be used.

-c corefile specifies the name of a corefile to use. If not specified and afile
named “core” exists in the current directory, this file will be used. To
supress the automatic use of a file name “core’, specify -c none. To use a
core file named “non€’, include a path specification such as-c ./none.

-P pathlist and -p pathlist specify the directories containing the source files
for the new program. The form-P pathlist replaces the current set of source
paths with the specified pathlist. The form -p pathlist adds the specified
path list to the current set of source paths.

Example:
The following command will begin a new debugging sesson on the program
a.out, supressing any core file, and using the source directories sourcel and
sourcel:

Fx Reference M anual

114 Command Reference

reinit a.out -c none -P sourcel: source2

Abbreviation:
rei

Related Commands:
1, kill

Return Returning from the current subroutine

Description:
The Return command resumes execution of the program being debugged until the
current procedure returns to its calling procedure or a breakpoint is encountered.
If the current procedure never returns to its calling procedure, execution will
continue until a breakpoint is encountered, an error occurs, or the program runs to
completion.

Usage:
Return

Abbreviation:
R

Notes:
If monitors are set during execution of the Return command, they will not be
checked until the current procedure returnsto its calling procedure or a breakpoint
IS encountered.

Related Commands:
continue, go

run Sarting and restarting program execution

Description:
Therun command is used to start or restart execution of a program. It can be used
to pass arguments to the program and to cause redirection of the program's
standard input and output. After the run command is issued, the program will
execute until a breakpoint is encountered, an error occurs, or the program runs to
completion.

Usage:
run{arglarg? ...argN}

where argl arg2 ...argN are the arguments to pass to the program. If an
argument begins with the character "<" the remaining characters of that
argument, or the following argument if no characters follow the "<", will
be used as file name for redirection of standard input. Likewise, if an

Fx Reference M anual

Command Reference 115

argument begins with the character ">" the remaining characters, or the
following argument if no characters follow the ">", will be used as a file
name for redirection of standard output. Redirection of other file
descriptorsis not supported.

If arguments are not specified, the arguments from the last execution of
this command, if any, will be used.

Abbreviation:
ru

Example:
The following command restarts the program being debugged and passes it the
character stringsone, t wo, and t hr ee as arguments:

ru one two three

The following command restarts the program being debugged, redirecting standard
output to thefileoutfil e:

r >outfile

Notes:
Each time program arguments are specified with the run command, the debugger
saves a copy of them in the Fx control variable $args. If it is desirable to run the
program without any arguments, the value of $args can be set to a string
containing only a single space before issuing the run command. The following
command will set $ar gs to the appropriate value:

change $args=

Related Commands:

external, kill
Scope Accessing variablesin recursive procedures
Description:

The scope command changes the procedure which defines the current scope.
Normally, the current procedure is the procedure whose source or assembly
language code appears in the standard source window. However, there may be
multiple occurrences of the same procedure in the current chain of execution. The
scope command provides a method for specifying a particular instance of a
procedure.

Usage:
scope procedure name { level}

Fx Reference M anual

116 Command Reference

where procedure name is the name of a procedure present in the current chain of
execution. The trace command can be used to display a list of all
procedure in the current chain of execution.

level is an integer constant and specifies a particular instance of the
specified procedure in the current chain of program execution. Level zero
refers to the first instance of the procedure, level one refers to the second,
and so on. If not specified, the current scope will be changed to the first
occurrence of the specified procedure.

Abbreviation:
sc

Example:
The following command changes the current scope to the procedure mai n:

scope main

The following command changes the current scope to third occurrence of the
procedure subone:

scope subone(2)

Notes:
The scope command has no effect when registers are displayed.

When debugging C programs, the debugger may not be able to accurately recreate
the values of register variables and parameters which passed in registers from
different scopes. The Absoft Pro Fortran compilers will automatically store
parameters passed in registers in the stack frame when compiling programs for
debugging, so the scope command will function correctly.

Related Commands:
change, list locals, print, section, watch

search Finding strings in source windows

Description:
The sear ch command searches forward from the current linein the file displayed in
the standard source window, or the list file window if it is visble, for a line
containing a string matching the specified regular expresson. A complete
description of regular expressions can be found in ed(1). If the end of the file is
reached without finding a match, the search will resume at the first line of the file
and continue until a match isfound or the current line is encountered.

Usage:
sear ch {"regular expresson"}

Fx Reference M anual

Command Reference 117

where regular expression specifies the string to search for. If not specified, the
last regular expression will be used.

Abbreviation:
se

Example:
The following command searches the current source file for a line containing the
string subrout i ne:

search "subroutine"

The following command searches the current source file for a line beginning with
the string 1000:

search "~1000"

Notes:
The sear ch command cannot be used to search disassembled code.

When using the Fx character interface with the list file window open, the search
will be performed on the file being display in it. When using the Fx graphical
interface, the search is always perfomed on the standard source window.

Related Commands:
list file, view

section Displaying arrays

Description:
The section command is used to display specific eements of arrays.

Usage:

section (...(array name (indexl,...indexN),index1 =
Ib1,ubl{,incri})...,indexN=IbN,ubN{ ,incrN}) {# format}

section array name [Ib1;ubl{;incr1]...[IbN;ubN{;incrN]{# format}

where array name isthe name of an array accessible within the current scope.
index1...indexN are either symbol names or integer constants used to
specify subscript(s) for examining the array. If a given subscript isa symbol
name it must have a matching range specification of the form

indexN=IbN,ubN{,incrN}. If a given subscript is a constant, it must not
have a matching range specification.

IbN is an integer expression specifying the starting value for indexN.

ubN is an integer expression specifying the ending value for indexN.

Fx Reference M anual

118 Command Reference

incrN is an integer expression specifying the increment value for a given
index. If not specified, avalue of onewill be used.

format is any of the legal display formats. Display formats are described in
the section on the print command. If format is not specified, a format
which is most appropriate for the type of the array will be used.

Abbreviation:
se

Example:
The following commands display every other dement of a single dimension
FORTRAN array with 20 elements:

section (a(i),i=1,20,2)
section a[1; 20; 2]

The following commands display every other e ement of a single dimension C array
with 20 elements:

section (a(i),i=0,19,2)
section a[0;19; 2]

The following commands display e ements 1,1 though 20,1 of a two dimensional
FORTRAN array:

section (a(i,1),i=1,20)
section a[1;20][1;1]

The following commands display elements 0,1 though 19,1 of a two dimensional C
array:

section (a(i,1),i=0,19)
section a[0;19][1; 1]

Notes:
Symbol names used to define indexes are unique to a section command and do not
correspond to symbals in the program being debugged. Also, a symbol name used
to define an index cannot be used in the integer expressions for |bN, ubN, or incrN.

The section command cannot be used to display arrays which are members of C
structures and unions.

Related Commands:
dump, print, scope, watch

shift Scrolling source windows
Description:
The shift command scrolls the standard source code window and list file window
horizontally.

Fx Reference M anual

Command Reference 119

Usage:
shift {direction}

where direction is an integer constant. If direction is negative, the windows will
be scrolled to the right. If direction is positive, they will be scrolled to the
left. If direction is not specified or zero, the windows will be scrolled as far
right as possible.

Abbreviation:
sh

Example:
The following command scrolls the source window one tabstop to the right:

shift 1

The following command restores the source window to its original position:

shift O

Notes:
The shift command has no affect when used with the Fx graphical interface.

The Fx control variable $tabsize defines the number of spaces for a tabstop. This
default value of this variable is eight. However, it can be set to any positive integer
value using the change command.

Related Commands:
list file, view, View

signal Controlling signal actions

Description:
The signal command allows you to control the actions taken when a signal is
presented to your program during a debugging session. You can can also use this
command to send a signal to your program at anytime.

Usage:
signal signal number
signal signal number PASS | NOPASS
signal signal number STOP | NOSTOP

where signal number is the positive integer which represents the signal you wish
to control. Specifying only a signa number will cause that signal to be
presented to your program the next time execution is resumed. You can
remove any pending signal by specifying zero instead of a signal number.

PASS | NOPASS indicates whether or not your program should be allowed
to see a particular signal. Specify PASS if you want the signal to be passed

Fx Reference M anual

120 Command Reference

on to your program or NOPASS if you wish Fx to prevent your program
from receiving the signal.

STOP | NOSTORP indicates whether or not a signal should stop execution
of your program. Specify STOP if you want Fx to stop execution of your
program when the signal occurs and NOSTORP if your program should be
allowed to continue executing.

Abbreviation:
sig
Examples:

The following command will cause your program to recelve a floating point
exception signal the next time execution is resumed:

signal 8

The following command will prevent your program from seeing future occurrences
of the floating point exception signal:

si gnal 8 NOPASS

The following command will prevent Fx from stopping execution of your your
program when afloating point exception signal occurs:

signal 8 NOSTCP

Notes:
Thelist signal command displays the current signal settings.

Related Commands:
list signal
size Resizing Fx windows

Description:
The size command changes the size of a visible debugger window.

Usage:
size {window name } {, number of lines}

where window name specifies the desired window. If window name is not
specified, the size of the last opened window will be changed.

number of lines is the integer number of lines by which to increase or
decrease the window's size. If positive, the window's size will increase. If
number of linesis not specified, the value one will be used.

Abbreviation:
S

Fx Reference M anual

Command Reference 121

Example:

The following command increases the size of the last opened window by three
lines:

size ,3

Notes:

The size command has no affect when used while debugging with the Fx graphical
interface.

The standard source window is not affected by the size command.

Related Commands:
close, dynamic, shift

sleep Delaying command execution
Description:
The sleep command suspends execution of the debugger for a specified number of
seconds.
Usage:

sleep { number of seconds}

where number of seconds is a positive integer constant. If not specified or zero is
specified, a value of one will be used.

Abbreviation:
S|

Notes:
The sleep command exists primarily for creating self running demonstrations of the
debugger. However, there may be occasions to use it for other purposes when
using the Fx character interface. Consider the following associate command:

associate main:1 "print i;print j;continue"

Since there are two print commands, the value of i may be replaced by the value
of j before there is time to examine it. The following associate command will
insert a delay between the two print commands show that both values may be
examined:

associate main:1 "print i;sleep 5;print j;continue”
Step Sepping over procedure calls
Description:

The Step command executes one or more source statements, starting with the next
statement to be executed. If one of the statements to be executed is a call to a

Fx Reference M anual

122 Command Reference

procedure, execution of the program will continue until the statement following
the procedure call is encountered or a breakpoint is encountered.

Usage:
Step { count }

where count is an integer expression which specifies the number of statements to
execute. If count is not specified, one statement will be executed.

Abbreviation:
S

Example:
The following command executes the next five statements of the current
procedure, treating any procedure calls as single statements:

Step 5

Notes:
The Step command will only stop for breakpoints set in a procedure which is being
treated as a single statement. It will ignore any breakpoints set on the instructions
which are part of the source statement being executed.

Related Commands:
instruction, I nstruction, step

step Executing single source statements

Description:
The step command executes one or more source statements, starting with the next
statement to be executed. If one of the statements to be executed is a call to a
procedure, the procedure will be entered if complete symbol information is
available for it. If complete symbol information is not available, execution of the
program will continue until the statement following the procedure call is
encountered.

Usage:
step { count }

where count is an integer expression which specifies the number of statements to
execute. If count is not specified, one statement will be executed

Abbreviation:
S

Example:
The following command executes the next five statements of the current
procedure:

Fx Reference M anual

Command Reference 123

step 5

Notes:
The step command will ignore any breakpoints set on instructions which are part
of the source statement being executed.

Related Commands:
instruction, I nstruction, Step

trace Displaying a stack trace

Description:
Thetrace command is used to display the chain of procedure calls which produced
the current program state. Each procedure in the current chain is listed along with
the procedure that called it and the calling procedures file and line number if
avallable.

Usage:
trace

Abbreviation:
t

Notes:
This command may not function correctly if the program being debugged is
stopped during execution of the entry code for a procedure. When the complete
entry code of athe procedure has not yet been executed, the words "At Entry” will
appear in the status display.

unmonitor Removing monitors

Description:
The unmonitor command removes a monitor previousy installed with the
monitor command.

Usage:
unmonitor {monitor id}

where monitor id is the positive integer value associated with the monitor when it
was ingtalled by the monitor command. The list monitors command can
be used to determine what id is associated with a particular monitor.

If monitor id is not specified, the debugger will display each installed
monitor and ask if it should be removed. If a"Y" or a"y" is entered, the
monitor will be removed. If anything else is entered, the monitor will
remain active. Note that you do not have enter a carriage return after

responding.

Fx Reference M anual

124 Command Reference

Abbreviation:
un

Example:
The following command removes the monitor which was assigned id 3 by the
monitor command:

unnoni tor 3

Related Commands:
list monitors, monitor

unwatch Removing watch variables

Description:
The unwatch command allows you to remove individual watch variables.

Usage:
unwatch {watch id}

where watch id is the positive integer value associated with the watch variable
when it was created with the watch command. Watch ids are displayed in
parentheses before each watch variable.

Abbreviation:
unw

Example:
The following command removes the watch variable with id 1.

unwatch 1

Notes:
Removing the last watch variable with the unwatch command automatically closes
the watch variable window.

Related Commands:
watch

update Refreshing Fx display
Description:
The update command redraws the contents of al visble windows. This command
isuseful if the windows have become disrupted.

Usage:
update

Abbreviation:

Fx Reference M anual

Command Reference 125

u

Notes:
The update command has no affect when used with the Fx graphical interface.

View Displaying assembly language code
Description:
The View command is used to examine the assembly language code for the
program being debugged.
Usage:

View {address expresson}
View {{"filename"} {: line number}}
View {{procedure name} {: line number}}

where address expresson evaluates to the address of an ingtruction in the
program. Examples of useful address expressions for the View command
include the name of an entry point, the name of an entry point plus an
integer offset, or the contents of a pointer to a function.

filename is the name of a source file which is part of the program being
debugged. If filename is not specified, the name of the current source file
will be used.

line number is an integer constant. If the specified line number exceeds the
number of actual lines in the source file, assembly language code for the
last executable line of the source file will be displayed.

procedure name is the name of a procedure in the program being
debugged. If the specified line number is one, the assembly language code
for the first executable source line of the specified procedure will be
displayed. If a line number other than one is specified, the command is
equivalent to "View filename :line number”, where filename is the name of
the file which contains the specified procedure.

If no arguments are specified, the address of the next instruction to be
executed will be used.

Abbreviation:
V

Example:
The following command displays assembly language code starting at the address
mai n+0x50:

Vi ew nai n+0x50

Fx Reference M anual

126 Command Reference

The following command displays assembly language code for the procedure
subone:

Vi ew subone

Notes:
The View command implicitly changes the current scope to the file and procedure
being displayed. If the procedure which is not currently active, the words "Not
Active' will appear in the status display.

Related Commands:
list file, next, previous, view

view Displaying source code

Description:
The view command is used to examine the source code for the program being
debugged. For details on a command which alows any file to be examined see the
list file command.

Usage:
view { address expression}
view {{"filename"} {:line number }}
view {{ procedure name }{:line number}}

where address expresson evaluates to the address of an ingruction in the
program. Examples of useful address expressions for the view command
include the name of an entry point, the name of an entry point plus an
integer offset, or the contents of a pointer to a function.

filename is the name of a source file which is part of the program being
debugged. If filename is not specified, the name of the file containing the
current source line will be used.

line number is an integer congtant. If the specified line number is greater
than the number of actual lines in the source file, the last line of the source
filewill be displayed.

procedure name is the name of a procedure in the program being
debugged. If the specified line number is one, the first executable source
line of the specified procedure will be displayed. If a line number other
than one is specified, the command is equivalent to "view filename :line
number"”, where filename is the name of the file which contains the
specified procedure.

If no arguments are specified, the line number of the next statement to be
executed and the source file which containsit will be used.

Fx Reference M anual

Command Reference 127

If source line information is not available for a specified procedure or if the
specified address expression does not identify a line of source code,
assembly language will be displayed instead.

Abbreviation:
\Y;

Example:
The following command displays the source code for the procedure subone:

vi ew subone

The following command displays the source code for the file sour ce. ¢, starting
with line 100:

vi ew "source.c": 100

Notes:
The view command implicitly changes the current scope to the file and procedure
being displayed. If the procedure is not currently active, the words "Not Active'
will appear in the status display.

Related Commands:
list file, next, previous, search, View

walk Repeatedly executing Fx commands

Description:
The walk command allows other debugger commands to be repeatedly issued by
the debugger itself. After the walk command has been issued, the debugger will
continue to execute the commands contained in the debugger variable $walkecmds
until explicitly stopped, an error occurs, a breakpoint is encountered, a monitor
stops execution, or the program runs to compl etion.

Usage:
walk { speed}

where speed is an integer constant between one and ten which specifies the delay
in half-seconds between issuing commands. If speed is not specified no
delay will occur between commands.

Abbreviation:
W

Notes:
By default, $walkcmds contains the character string "step”. This can be changed
to any character string using the change command. Setting this variable to a
nonsense string will result in error and terminate execution of a walk command
immediately.

Fx Reference M anual

128 Command Reference

watch Observing program variables

Description:
The watch command is used to automatically display the value of an expression
after each subsegquent debugger command.

Usage:
watch value expression {# format }

where value expression specifies the value to be printed. Particularly useful value
expressions include variable names, subscripted arrays, and references to
structure and union members.

format is any of the legal display formats. Display formats are described in
the section on the print command. If format is not specified, a format that
ismost appropriate for the type of value expression will be used.

Abbreviation:
wat

Example:
The following command will cause the contents of the variable i ndex1 to be
displayed after each subsequent command:

wat ch i1 ndex1

Notes:
Value expressons involving local variables will only be displayed while the
procedure in which they are declared is active. When a procedure, which declaresa
variable that is part of watched expression, is inactive, the message "(OUT OF
SCOPE)" will be displayed instead of the expression’s value.

Related Commands:
dump, print, scope, section

Fx Reference M anual

129

APPENDIX A

The Fx Character Interface

The Fx character interface provides full screen debugging capabilities on a wide variety of
character based terminals. While it cannot provide al of the benefits of a graphic user
interface, you will find that it does offer significant advantages over line oriented
debuggers.

Starting the Character Interface

When using the Fx character interface you must make sure that Fx can determine the type
of your terminal. Fx uses the environment variable TERM to find out this information. If
you are a regular user of a full screen editor, such as vi(1), this variable is aready set to
the correct value. If this variable is not defined, you will see the following error message
when you begin a debugging session:

Unable to initialize Fx interface, check the val ue of TERM

If this occurs, you must determine the name of your termina and define TERM
appropriately. If you do not know how to define your terminal, consult your system's User
Guide or ask your system administrator to assist you.

Like many programs, Fx will supply default arguments where none are specified. For
example, the standard UNIX C compiler, as well as many other compilers, will create an
executable program named a. out unless you tel it otherwise. Smilarly, Fx will assume
you wish to debug a program named a. out unless you tell it otherwise. For example, if
you have a source file named wr dent . ¢, you can compile it with the following command:

cc wdent.c

The C compiler will ook in the current directory for afile named wr dent . ¢ and produce
an executable program named a. out . To debug this program, you can enter:

fx

Fx will look in the current directory for a program named a. out and begin a debugging
session.

Preparing Your Program For Debugging

Fx Reference M anual

130 The Fx Char acter Interface

If you performed the steps described in the previous section, you probably noticed that Fx
displayed a screen full of assembly language code after issuing the following warning

message:
Warni ng: a.out has no |ine nunmber information

This occurred because you did not inform the C compiler that you intended to use a
source level debugger. In order to debug at the source level, you must specify the -g
option when compiling your source code. By specifying the -g option, you instruct
compilers to include additional information in the executable program that describes the
source files, procedures, and variables that are part of your program.

You can use the following command to compile the source file wrdent . ¢ for use with a
source level debugger:

cc -g wdcnt.c

The C compiler will produce a program named a. out and you can start a debugging
session by entering:

fx

Instead of issuing a warning message, Fx will display the following:
Loadi ng synbol information
Processing wdcnt. ..

Synbol table initialization conplete
Enter Cr to continue

After you entered a carriage return, Fx will display the source code for wr dent . ¢ and you
can begin debugging.

Starting an Fx Debugging Session

This section discusses starting a debugging session. It describes how to specify the name
of the program to debug, the name of a core file, and the directories that contain a
program’s source code. It also discusses the command line options that you can use to
modify the behavior of Fx.

Command Line Syntax

Fx isinvoked from the shell prompt as follows:

fx {program nane} {options}
where fx starts a debugging session using the character interface.

program name is the name of the program to be debugged. If no
nameis specified, the name a.out will be used.

Fx Reference M anual

The Fx Char acter Interface 131

optionsis alist of options in the form -o1 -02 ... where -o01, -02 ...
represent any of the command line options discussed in bel ow.

Sample Command Lines

This section contains sample command lines that might be used to invoke Fx. Each
example is followed by a brief discusson of how the command line arguments are
interpreted.

The following command line is the smplest way to invoke Fx:
fx

When no arguments are specified, Fx assumes the following default arguments:
fx ./a.out -c ./core -p ./

In this case, the program, the core file, and any source files used to build the program are
assumed to be the current working directory. The following command line illustrates how
to specify a program name, core file, and source paths.

fx myprogram-c | astcore -p interface: data: sysdep

The-c | astcore causes Fx tolook in the current directory for afile named | ast cor e to
use with nyprogram The string i nt er f ace: dat a: sysdep indicates that the source files
which were used to make nyprogram exist in three subdirectories off of the current
working directory.

War nings and Progress I nfor mation

When you start a debugging session, Fx reads the debugging information contained in
your program and informs you of any unusual conditions such a source file that has
changed since you compiled your program. If you wish to suppress the printing of this
information, specify the -w option when you begin a debugging session.

Specifying a Core File

If afile named cor e exists in the same directory as the program being debugged, Fx will
automatically use it. If you wish to use a core file with a different name or location, you
must specify the -c name option when starting Fx. If you wish to suppress the automatic
use of afile named cor e, use the -c option with the name none. Note that if you must use
a core file named none, you will have specify a partial path name like . / none. You can
enter the following command to debug a program named progrant with the core file
/usr/fred/core:

fx programl -c /usr/fred/core

Specifying M ultiple Sour ce Directories

Fx Reference M anual

132 The Fx Char acter Interface

When you specify the -g option, compilers will cause the name of each source file to be
present in the executable program. However, the directory where the source file is located
is not present. If your program is built from source files contained in multiple directories,
you will need to specify those directories using the -p pathlist option. Y ou may specify all
of the directories in one path list by separating them with colons or you may specify the -p
option multiple times.

To start a debugging session on a program named pr ogr aml created with source code
located in the directories / usr/fred/ source and /usr/fred/interface, you can enter
ether:

fx programl -p /usr/fred/ source -p /usr/fred/interface

or:
fx programl -p /usr/fred/ source:/usr/fred/interface

I nter ception of ter minal input/output

When you are using the Fx character interface, Fx will intercept any terminal 1/0
performed by your program. If you are debugging a program that makes minimal use of
terminal /O, you may wish to disable this feature by specifying the -1 option. If you do,
you should note that any terminal 1/0O your program does will overwrite the Fx display.
When this occurs, you can use the update command to redraw the screen. Note that this
option has no effect when used with the Fx graphic interface.

I nter ception of FORTRAN 1/O gotos

When debugging FORTRAN programs compiled by an Absoft Pro Fortran compiler, Fx
will intercept execution of a FORTRAN ERR= or END= |/O specifiers and report that
program control was transferred abnormally. If you do not want this to occur, specify the
-G option. If you are debugging a C program or a FORTRAN program compiled with a
different compiler this option has no effect.

Debugging Curses Applications

If you are debugging an application that uses the curses library with the Fx character
interface, you will need to specify the -C option to prevent conflicts between the Fx curses
interface and your program. Note that this option implicitly turns on the -1 option. When
the Fx display is disrupted by the actions of your program, you can use the update
command to correct this problem.

Altering Option Defaults

If you find that you are frequently specifying one or more of the command line options,
you can reverse the default state of the command line options. Before interpreting options
on the command line, Fx looks for an environment variable named FXOPTI ONS. If this
variable exigts, its contents will be used to set the default option states.

Fx Reference M anual

The Fx Char acter Interface 133

Character Interface Tutorial

To load the tutorial program, type:
fx wdcnt

and press Return. Information on the symbol table and copyright will appear on the
screen. To continue, press the Return key.

Character Interface Windows

The Fx character interface divides your terminal screen into separate windows. There are
three windows that are normally visble during a debugging session: the Command
window, the Status window, and the Source window. Additional display windows are
created when you execute a command, such a the print command, which displays
information about your program.

File:=wrdcnt.c Unit:main{At Entry) Line:3%
34 main{int argc,.char =argu[])
35 h
a6 int i;
37 Finfo this file;
as Finfo totals;
39
L) ParseOptions{&argc,argv);
1
u2 if {argc == 1) /= Ho file specified, use standard in =/
43
hy this_file.file = stdin;
45 this_file.pame = 8;
46 GetCounts{&this_file);
47 WriteCounts(&this_file);
48 3
49 else
co {
c1 totals.word_count = B;
52 totals.line_count = B;
L3 totals.char _count = @;
cy totals.name = "totals";
1
|
Figure A-1

Character interface

The Sour ce Window

The Sour ce window occupies al of the lines between the status window and the command
window. Thiswindow is used to display the source and assembly code for your program.
When aline on which a breakpoint has been set is visble in the source code window, the
character 'B' will be displayed next to the line. You can use the next and previous
commands to scroll the source window vertically, and the shift command to scroll the
source window horizontally.

Fx Reference M anual

134 The Fx Char acter Interface

The Command Window

Y ou communicate with Fx by typing commands on the Command window at the bottom
of the screen. This window occupies the last line on the screen, and its location is marked
by the command prompt.

After you have typed a command, you can have Fx execute the command by pressing the
return or enter key. Multiple commands may be specified by separating them with semi-
colons. You can repeat execution of the last command(s) without retyping the command
by pressing the Return or Enter key.

Although most character terminals cannot display more than 80 characters on asingle line,
you can enter up to 256 characters on the command line. If you enter more than 80
characters the command line will scroll to the left so that you can continue typing. By
default, the command prompt is "Fx>" but this default can be modified usng the Fx
control variable $prompt. Control variables are discussed in Appendix B.

The Status Window

The first line of the screen is reserved for the Status window. This window is used to
display information about the current state of your debugging session. Information
displayed in this window includes the current source file, procedure and line number as
well as any Fx features, such as command logging, which are currently active.

Display Windows

When you execute a command that displays information about your program, a Display
window is created to contain the information. These windows appear above the command
window and reduce the size of the source window. Fx will attempt to display all of the
output of a command by increasing the size of a display window. Each display window
includes a title bar containing the name of the command that created the window. This
name is used to refer to specific display windows when using the dynamic, size, and close
commands discussed below. When the output of a command requires more lines than are
currently available, Fx will display as many lines a possible and then wait for you to pressa
key. At this point, you can press the Return or Enter key to display additional lines of
output, or press any other key to terminate output display.

Setting Breakpoints

We will set a breakpoint in the tutorial program on line 40. To do this, type the following
in the Command window:

break "wrdcnt.c": 40

and press Return. The location of the breakpoint will be marked with the letter B in the
Sour ce window.

Fx Reference M anual

The Fx Char acter Interface 135

File:wrdcnt.c Unit:main{At Entry) Line:3%
34 main{int argc,char =argu[])
35 h
36 int i;
37 Finfo this file;
as Finfo totals;
a9
ue [§ ParseOptions{&argc,argu);
31
n2 if {argc == 1) /= Ho file specified, use standard in =/
n3
hy this_file.file = stdin;
45 this_file._name = 8;
L GetCounts(&this_file);
U WriteCounts(&this_file};
ug 3
49 else
Y5} {
c1 totals.word_count = B;
52 totals.line_count = B;
53 totals.char _count = 8;
ch totals.name = "totals";
55
|
Figure A-2

Breakpoint at line 40

The method for setting a breakpoint in a procedure is smilar. For instance, to set a
breakpoint on the first line of the procedure named Get Count s, you would type:

Fx> break GetCounts

in the Command window and press Return. This breakpoint will also be marked with the
letter B in the Sour ce window.

Executing Programs

To run the w dcnt program, a file needs to be specified so the program can count the
words, lines and characters. Thisfileis specified as an argument to the run command. For
this tutorial, the number of words, lines and characters in the wr dent source file will be
counted. To do this, enter the following command in the Command window.

Fx> run wdcnt.c

Since we set a breakpoint, the program will stop and highlight the line where the
breakpoint is set; in this case, at line 40.

Fx Reference M anual

136 The Fx Char acter Interface

File:wrdcnt.c Unit:main Line:48
34 main{int argc,char =argu[]}

35 ¢
a6 int i;
37 Finfo this file;
as Finfo totals;
39
48
31
u2 if {argc == 1) /= Ho file specified, use standard in =/
43
hy this_file.file = stdin;
45 this_file.pame = 8;
46 GetCounts{&this_file);
47 WriteCounts(&this_file);
ug 3
49 else
co {
c1 totals.word_count = B;
52 totals.line_count = B;
L3 totals.char _count = @;
cy totals.name = "totals";
LS
|
Figure A-3

Source window after issuing the run command
Printing Variables
To print the variable named ar gc, type:
Fx> print argc

and press Return. A display window will appear with the variable and its value.

Fx Reference M anual

The Fx Char acter Interface 137

File:wrdcnt.c Unit:main Line:408

34 main{int argc,char =argu[])

35 ¢

a6 int 1i;

37 Finfo this_file;

as Finfo totals;

a9

48

1

u2 if {argc == 1) Jf= Ho file specified, use standard in =/

43

uy this_file.file = stdin;

45 this_file.name = B8;

LT, GetCounts({&this_file);

47 WriteCounts(&this_file);

48 3

49 else

ca {

c1 totals.word_count = B;

g2 totals.line_count = B;

L3 totals.char _count = @;
------------------------------------ msy----—-
argqc = 2
Fx>]

Figure A-4

Print Display window
At this point, we can continue to execute the program to the next breakpoint by entering:
Fx> conti nue

in the Command window and pressing Return. The Display window will disappear, and
the tutorial program will execute to the next breakpoint located at the start of the
Get Count s procedure.

Executing Single Statements

To execute the program one statement at a time, use the step command.
Fx> step

Since Fx will remember the previous command, type Return to execute the step command
three more times.

The Step command, with a capital "S", is used to step over subroutines. To avoid
following the next subroutine and stop on the linein the current procedure, type:

Fx> Step

and press Return.

Fx Reference M anual

138 The Fx Char acter Interface

File:wrdcnt.c Unit:GetCounts Line:148

134 [}

135 f->1ine_count = 8;

136 f->word _count = @;

137 f->char_count = 8;

138

139 while{ GetLine{f))

140
181}

142

143 static void
144 WriteCounts{Finfo =f)

146

147 Write results for passed in file.
148
158 {
151 if (optflags & COUNTLIMES})
152 {void) printf{"%7d ",f->1line_count);
153
154 if {(optflags & COUHTWORDS)
Fx>]
Figure A-5

After the Step command

Dereferencing C Variables

To dereference a C variable, use the print command with the * symbol before the
variable. For example, to dereference the variable, first type at the prompt:

Fx> print *f

and hit Return.

Fx Reference M anual

The Fx Char acter Interface 139

File:wrdcnt.c Unit:GetCounts Line:148

134 [}

135 f->1ine_count = 8;

136 f->word _count = @;

137 f->char_count = 8;

138

139 while{ GetLine{f))

140
181}

142

143 static void
144 WriteCounts{Finfo =f)

147 Write results for passed in file.
148
———————————————————————————————————— Ul -

f->file = BxARO49eCE
f->name = wrdcnt.c

f->1ine count = @
f->word_count = 1
f->char_count = 74

Fx>]

Figure A-6
Dereferencing a variable

The display window will appear, showing the number of words, lines and characters
counted up to this point.

Watching Variables

To determine if a variable is being overwritten by a function, you can use the watch
command to watch the value of the variable as the program executes.

Towatch thef >l i ne_count andthef >word_count variables.

Fx> wat ch f->line_count
Fx> wat ch f->word_count

The display window will appear which contains the values of each of the variables. Each
variable is listed with an id number next to it. To watch the values as the program
executes, enter:

Fx> Step

To remove the first variable that you are watching from the display window, enter the
unwatch command with theid number of the variable.

unwat ch 1
and press Return. To stop watching all variables and close the window, enter

Fx> cl ose wat ch

Fx Reference M anual

140 The Fx Char acter Interface

Keeping Display Windows Visible

With the exception of the windows created by list file and watch commands, display
windows are automatically closed when you execute another command. Occasionally, you
may want a window to remain on the screen for continuous reference. You can use the
keep command to cause a display window to remain visible during execution of
subsequent commands.

You can use the following commands to display the contents of the machine registers and
have the displayed information remain on the screen during execution of further
commands:

Fx> registers
Fx> keep

File:wrdcnt.c Unit:GetCounts Line:148

134 [¢

135 f->1ine_count = 8;

136 f->word _count = @;

137 f->char_count = 8;

138

139 while{ GetLine{f))

140
181}

142

143 static void
144 WriteCounts{Finfo =f)

—————————————————————————————————— el st e s ittt bttt

eax: Dx0008B04a ebx: 0x00000008 ST(7): [EHPTY] 2
ecx: Bxbffffd8c edx: @xbFFffd8c ST(6): [EHPTY] 2
edi: Dx08048568 esi: Ox4B001fb@ ST(5): [EHPTY] 2
ebp: BxbfFFfd6c esp: OxbFFFFdG6c ST(4): [EWPTY] B.184187
eip: Ox08048998 flag: Bx080080382 ST(3): [EWPTY] @
fpcw: Bx@000037f fpsw: Ox00000088 ST(2): [EHPTY] O.184187
fpip: 0x000ODOBO Fpdp: O<OP0O00OAD ST(1): [EMPTY] @
ST(B): [EHPTY] 12
Fx>]
Figure A-7
Registers display window

M aking Display Windows Dynamic

You can use the dynamic command to have the command that created a window
automatically executed after each subsequent command. If you want to watch the contents
of the machine registers change as you executed your program, you can enter the
following commands:

Fx> registers
Fx> dynam c registers

Resizing Display Windows

Fx Reference M anual

The Fx Char acter Interface 141

If you are using the register s command to examine the contents of afile, you can increase
the size of the window displaying the file by three lines using the size command:

Fx> size registers, 3

The following command will restore the window to its original size:
Fx> size registers,-3

Closing Display Windows

The close command removes a display window from the screen. To remove the display
window created by a print command, you can enter:

Fx> cl ose print

Changing the Value of Variables

The change command is used to change the value of variables. For example, to change the
value of the variablef - >wor d_count , type:

Fx> change f->word_count = 100

To see the new value, use the print command.
Fx> print f->line_count

Exiting from the Character Interface

To exit the debugger at any time and return to the shell prompt, enter:

Fx> qui t
Using the Keyboard

In addition to entering commands in the Command window, you can also use certain
keystrokes to perform common operations. For example, the next command will scrall the
source window forward one page. You can also perform this action by holding down the
control key and pressing the F key. If your keyboard has a page down key, you can use it
aswell. The table below summarizes the keystrokes and special keys you can use with the
character interface.

Fx Reference M anual

142 The Fx Char acter Interface

Keystroke Specia Key Action

CTRL-F Page Down Scrolls source window
forward one page

CTRL-B Page Up Scrolls source window
backward one page

CTRL-J Down Arrow Scrolls source window
forward oneline

CTRL-K Up Arrow Scrolls source window
backward oneline

CTRL-R Recalls last command line

CTRL-U Erases current command
line

CTRL-H Backspace Erases last character entered
on command line

Using Function Keys

If your terminal has function keys, you can assign one or more Fx commands to each key.
When you want to assign a command to a function key, you use the change command to
set the value of the appropriate function key control variable. There are 64 function key
control variables named $fk1 though $fk64. Other control variables are listed in Appendix
B.

Use the following command to have the continue command executed each time the
function key F1 is pressed:

Fx> change $f k1="conti nue"

Fx Reference M anual

143

APPENDIX B

Fx Control Variables

Fx defines a number of control variables, internal variables that modify the operation of
commands. The table below lists the names of the Fx control variables, their purpose, and
default values. In addition to the control variables listed below, Fx also allows up to 64
function key variables to be defined for use with the Fx character interface. The function
key variables are named $fk0 through $fk63 and can be assigned any character string
value. Unlike Fx control variables, function key variables do not exist until they are
assgned a value with the change command.

Fx Control Variables

Name Controls L egal Values
$acount maximum number of array any positive integer, default is 100
elements displayed when

unsubscripted arrays displayed
with the print command

$args arguments passed to a program any character string, default isthe last
by the run command no arguments specified with arun
arguments are specified command

$case case folding for symbol table "lower", "upper”, or "both", default is
searches "both"

$empfmt display format for COMPLEX any FORTRAN format suitable for
values displaying COMPLEX values, default
is"('(,1PG15.E2,,',1PG15.6E2,")")"

$cwd controls program's current acharacter string which specifiesthe
working directory directory

$dempfmt | display format for DOUBLE any FORTRAN format suitable for
COMPLEX values displaying COMPLEX values, default

is"('(,1PG24.E3, ', 1PG24.6E3,)")"

$deflang default expression language "C" or "FORTRAN", default is"C"

Fx Reference M anual

144 Fx Control variables

$efmt display format for double any FORTRAN format suitable for
precison values displaying double precision values,
default is" (1PG24.15E3)"

Fx Reference M anual

Fx Control variables

145

Fx Control Variables

Name

Controls

L egal Values

$dist

$explang

$ffmt

$olist

$leading

$lsort

$mgrain

$mstep

whether list entries displaysal
entry points or only those with
full symbol information, when
non-zero al entry points are

displayed

current expression language,
when set to "automatic”, the
expression language is determined
by the current source file name

display format for single precison
values

whether list globals displays all
global symboals or only those with
defined types, when non-zero all
globals are displayed

leading characters stripped from
namesin a program's symbol table

whether output from list entries,
list globals, list locals, and list
staticsis sorted, when non-zero
output is sorted

the number of times the command
in $mstep is executed before
checking monitors during
execution of acontinue or go
command

Fx command executed when a
continue or go command is
issued with active monitors

any integer, default isO

"automatic", "C", or "FORTRAN",
default is"automatic”

any FORTRAN format suitable for
displaying single precison values,
default is"(1PG15.6E2)"

any integer, default isO

any character string, default is™_"

any integer, default is1

Any positive integer, default is 1

"Step"”,"step”,"ingtruction”, or
"Instruction”, default is"step”

Fx Reference M anual

146 Fx Control variables

Fx Control Variables

Name Purpose L egal Values

$numbers | display of source line numbers any integer, default is 1
when non-zero line number are

displayed
$prompt Fx command prompt any character string, default is"Fx>"
$read execution of commands read from | any integer, default is 1

afile, when zero display
commands are not executed

$den maximum number of characters any positive integer, default is 80
displayed with s display format
$dist whether thelist statics command | any integer, default isO

displays all static symbols or only
those with defined types, when
non-zero all static symbols are

displayed

$smooth smooth scrolling of the source any integer, default isO
window, when non-zero smooth
scrolling is enabled

$tabsize the number of spaces to expand any positive integer, default is 8

tabs

$trace maximum number of framesto any positive integer, default is 50
create when performing a strack
trace

$union display of union members when any integer, default is 1

unqualified union names are
specified with the print
command, when non-zero al
members of a union are displayed

$walkemds | Fx commands executed by walk | any list of Fx commands, default is
command "step”

Fx Reference M anual

147

APPENDIX C

Debugging Optimized Code

Although it is generally a sound practice to completely debug a program before turning on
any compiler optimizations, there may be occasons when it is necessary to debug the
optimized version of a program. Whileit is not impossible to debug optimized code at the
source level, you should be aware that code optimization makes debugging a much harder
task. For this reason, many compilers will not permit you to request optimizations when
you have specified the -g option. This appendix describes some of the problems you will
encounter when trying to debug optimized code at the source levd.

Why Optimized Codeis a Problem

In order for source level debugging to work, a compiler must output additional
information describing the relationship between the source code it compiles and the
assembly language code it produces. While the exact format of this information will vary
between different compilers and operating systems, it generally assumes that there exists a
one-to-one correspondence between the eements of the source program and their
representation at the assembly language and machine levels.

For example, in order for a debugger to display the contents of a program variable, the
compiler must output information describing the memory location where that variable will
exist when the program is executed. In order to set a breakpoint, the debugger must know
which assembly language instructions correspond to a particular source statement. Many
of the commonly performed optimizations will dramatically alter, or even destroy, this
relationship between a program and its source code.

Code Elimination Optimizations

One of the ways in which a compiler will optimize a program is remove code that has no
affect on the execution of the program. For example, if a compiler can determine that the
value assigned to a variable is never used during the course of a subroutine, it may not
generate any code to perform the assignment. Consider the following FORTRAN
subroutine:

SUBROUTI NE S| MPLE(A, SUM)
| NTEGER A(10), SUM

I NTEGER I, J, K

J =10

K = 20

SUM = 0

DO(1 =1, 10)

Fx Reference M anual

148 Debugging Optimized Code

SUMESUMKFA(1)
ENDDO
RETURN
END

Since the values assigned to J and K are never used anywhere in the subroutine, many
compilers will not generate any code to store their values. If you use the print command
to display either of these variables, you will see whatever happened to be present in their
memory locations.

Memory and Register Optimizations

Since accessing memory is usually the dowest operation for a computer to perform,
optimizing compilers will attempt to avoid accessing memory whenever possible. Thisis
done by storing the values of variables to memory only when it is necessary. Consider the
following piece of FORTRAN code:

DO (=1, 10)
K = 10
J = A(l)+K
L=1J
ENDDO

An optimizing compiler will probably do the following things with this loop: move the
assgnment of K above the start of the loop and move the assignment to L below the
bottom of the loop. This transforms the source code into the following:

K = 10

D1 =1, 10)
J=A(1) +K

ENDDO

L=1J

When these optimizations are performed, Fx will not be able to display a meaningful value
for L until the loop had completely executed. Another optimization that might be
performed is to use keep the values of 1 and J in registers for the duration of the loop.
Unfortunately, Fx has no way of knowing that this is occurring, and will sill use the
memory locations defined for these variables whenever you referenced them. For example,
if you attempt to print the value of A(1) on the fifth execution of the loop, you will not
see the fifth eement of the array A unless | happened to have the value of 5 before the
loop started. Also, you will not be able to use the change command to affect the number
of times the loop executed.

Peephole Optimization

After a compiler has performed the optimizations that deal with source code, it may
invoke a specia optimizing pass, called a peephole optimizer, on the resulting instructions.
The job of the peephole optimizer is to rearrange the generated instructions to take
advantage of any hardware specific features such a branch delay dots and multiple stage
pipdines. Performing this type of optimization will often cause instructions which were

Fx Reference M anual

I ndex 149

part of one source statement to be moved into a completely different statement, and if a
program turns out to be particularly suited to this type of optimization, there will be little
correspondence between the final executable code and the original source code.

Fx Reference M anual

| ndex

151

I command, 83

fxinit, 43

A

Absoft FORTRAN, 92, 130
address expressions, 80
arrays
C, 75
displaying, 114
FORTRAN, 74
indexing, 60
ASCII table, 96
assembly language
breakpoints, 68
displaying, 68
displaying, 67, 121
executing single instructions, 67
registers, 68, 110
associate command, 84
Automatic Help, 33

binary constants, 76
break command, 85
Breakpoint menu, 24
breakpoints
executing commands, 52, 84
external procedures, 58
listing, 53, 96
removing, 54, 89
setting, 50, 52, 85
skip counts, 53

array indexing, 75

data types, 74

functions, 75

operators, 79

symbols, 74

variables, 75
case sensitivity, 32, 72
change command, 86
Change Variable dialog, 36, 62
changing

variables, 62
character constants, 78
character interface

entering commands, 131

starting, 127

tutorial, 130

windows, 130
close command, 87, 138
command

delaying execution, 118
command logging, 102
command playback, 48, 109
commands

entering, 39
commands

executing during initialization, 43
common blocks

FORTRAN, 73
compiler options

g option, 129

O option, 42
complex constants, 77
constants, 76

binary, 76

complex, 77

decimal, 76

floating point, 77

hexadecimal, 77

integer, 76

octal, 76
Continue button, 38
continue command, 88
control variables, 43, 141

changing, 86

listing, 97
corefiles, 45, 129
creating acommand file, 19
current expression language, 78

D

data types
C, 74
FORTRAN, 73
debugging session
playing back, 48
restarting, 44, 110
starting character interface, 128
terminating, 109
decimal constants, 76
default expression language, 79
Delete Breakpoints dialog, 25, 54
delete command, 89
Delete command, 89
dialogs
Change Variable, 36, 62
Delete Breakpoints, 25, 54
Display Memory, 30
Execute Procedure, 23, 57
Execute To, 21
Load Program, 42
Log File, 19, 47
Reinitialize, 18, 44
Remove Monitors, 27, 64
Run Program, 22, 54

Fx Reference M anual

152 I ndex

Set Breakpoint, 24

Set Monitor, 26, 63

Start Walk, 22, 56

Stop Walk, 56

Stop Walking, 22
display formats, 107
Display Memory dialog, 30, 68
Display menu, 29
displaying

arrays, 60, 114

assembly code, 67

assembly language, 121

files, 46, 98

memory, 57, 68

program output, 106

registers, 68, 110

source code, 46, 123

stack trace, 47, 120

structures, 60

unions, 60

variables, 57, 59, 107
dump command, 90
dynamic command, 90, 137

E

entering commands, 39
character interface, 131
evaluating
expressions, 60
Execute menu, 21
Execute Procedure dialog, 23, 57
Execute To dialog, 21
executing procedures, 57
executing single statements, 49
explicit scoping, 71
expression interpretation, 78
expression language, 32, 78
expression operators, 79
external command, 91

File menu, 18
filestatus command, 92
floating point constants, 77
FORTRAN
array indexing, 74
common blocks, 73
data types, 73
intrinsic functions, 60
local variables, 73
operators, 79
subroutines, 73
substrings, 74
symbols, 73
functions
C, 75
Fx options
c option, 129
C option, 130
defaults, 130

G option, 130
| option, 130

p option, 129
w option, 129

global symbals, 62

go command, 93

graphic interface, 15
main window, 16
menus, 17
tutorial, 5

help command, 94
Help menu, 33
hexadecimal constants, 77

implicit scoping, 71
initialization file, 43
instruction command, 95
Ingtruction command, 94
integer constants, 76

keep command, 95
kill command, 96

L

list ascii command, 96
list breakpoints command, 96
list control command, 97
list entries command, 97
list file command, 98
list globals command, 99
list locals command, 100
list monitors command, 101
list signal command, 101
list statics command, 101
listing
breakpoints, 53, 96
control variables, 97
monitors, 65, 101
procedures, 97
variables, 61, 99, 100, 101
Load Program dialog, 42
local symbols, 62
local variables
FORTRAN, 73
log command, 102
Log Filedialog, 19, 47

memory

Fx Reference M anual

| ndex

153

changing, 86

displaying, 57, 68, 90

monitoring, 69
menus

Breakpoint, 24

Display, 29

Execute, 21

File 18

Help, 33

Monitors, 26

Option, 32

popup, 17, 34
monitor command, 103
monitors

listing, 65, 101

removing, 64, 120

setting, 103
Monitors menu, 26

next command, 105

O

octal constants, 76
operand interpretation, 80
operators, 79

C, 79

FORTRAN, 79
optimized code, 42, 145
Option menu, 32
Ouput Pane

clearing, 38
output command, 106

P

playing back a debugging session, 48
pointer dereferencing, 75
popup menus, 17
previous command, 106
print command, 107
procedures
caling, 57, 91
listing, 97
returning from, 111
program arguments, 54, 56
program execution
animating, 55
restarting, 54, 56
resuming, 88, 93
returning from procedures, 111
returning from subroutines, 50
single instructions, 67
singleinstructions, 94, 95
single statements, 49, 118, 119
starting, 111
stopping, 50, 103
terminating, 96
program /O, 130

Q

quit command, 109

R

read command, 109
recreating a debugging session, 47
registers
changing, 86
displaying, 68, 110
monitoring, 69
names, 78
registers command, 110
reinit command, 110
Reinitialize dialog, 18, 44
Remove Monitors dialog, 27
removing watch variables, 121
Restart button, 38
restarting a debugging session, 18, 44
Return button, 38, 50
Return command, 111
returning from subroutines, 50
run command, 111
Run Program dialog, 22, 54

S

scope command, 71, 112
search command, 113
section command, 114
Set Breakpoint dialog, 24, 51
Set Monitor dialog, 26, 63
shift command, 115
Show Current button, 39
signal command, 116
signals

controlling, 116

listing, 101
size command, 117, 137
deep command, 118
Source Browser, 31, 46
source code

displaying, 46, 123
source directories, 44, 129
Source Pane

scrolling, 17
Source Pane popup menu, 17
stack trace, 45, 120
Stack Trace button, 38, 45, 47
Start Walk dialog, 22, 56
starting Fx

character interface, 127

graphic interface, 42
static symboals, 62
step command, 119
Step command, 118
Step Into button, 38, 49
Step Over button, 38, 49
Stop Walk dialog, 56
Stop Walking dialog, 22

Fx Reference M anual

154 I ndex

stopping Fx, 109
structures
displaying, 60
referencing members, 60
subroutines
FORTRAN, 73
suppressing use of a corefile, 129
Symbol Browser, 29, 61
symbol names, 72
system commands, 83

T

Toggle Source button, 39, 67
trace command, 120
tutorial
character interface, 130
graphic interface, 5

U

unions
displaying, 60
referencing members, 60
unmonitor command, 120
unwatch command, 121
update command, 121

value expressions, 80
varaiables
changing, 86
variables
C, 75
changing, 62
displaying, 57, 59, 61, 107
listing, 100, 101
monitoring, 63
scoping, 71
specifying, 72
watching, 60, 124
view command, 123
View command, 121

wak command, 124

warnings, 129

watch command, 124

watch variables
removing, 121

windows
character interface, 130, 137
closing, 87

Fx Reference M anual

	Absoft Fx Debugger User Guide
	Copyright Notice

	Table of Contents
	Chapter One: Introduction
	About Fx
	About Fx Interfaces
	About the Examples in this Manual
	Conventions Used in this Manual
	An Overview of the Chapters in this Manual

	Chapter Two: Tutorial
	Launching the Debugger
	The Tutorial Program
	Using the Load Program Dialog
	Executable File
	Core File
	Source Path(s)
	Working Directory

	Loading the Program Into the Debugger

	Setting a Breakpoint
	Setting a Breakpoint on a Line
	Setting a Breakpoint within a Procedure

	Executing Programs
	Using the Run... Menu Item
	Printing Values of Variables
	Executing Single Statements
	Dereferencing a Pointer Variable
	Watching Variables
	Removing Watched Variables
	Changing Variables

	Exiting the Debugger

	Chapter Three: Fx Interface Reference
	Using the Fx Interface
	Fx Main Window
	Menus
	Status Field
	Push Buttons
	Navigating Through Text
	Popup Menus
	Command Entry Text Field

	Menus
	File Menu
	Reinit
	Log
	File...
	On
	Off

	Read...
	List...
	Kill
	Exit

	Execute Menu
	Until...
	Run...
	Walk...
	External Procedure...

	Breakpoint Menu
	Set...
	Location Text Field
	Associate Commands Text Field
	Skip Count Text Field

	Delete...
	Delete All
	List

	Monitors Menu
	Set...
	Variable Text Field
	Condition Option Menu
	Value Text Field

	Remove...
	List
	Command
	Step Into
	Step Over
	Instruction Step Into
	Instruction Step Over

	Display Menu
	Variables
	Registers
	Memory...
	Address Text Field
	Format Option Menu
	Size Option Menu
	Count Text Field

	Source
	File Status
	ASCII Table

	Option Menu
	Expression Language
	Case Sensitivity

	Help Menu
	Automatic Help Field
	Using the Help Menu
	On Topics
	On Commands
	On Version

	Popup Menus
	Source Pane Popup Menu
	Toggle Line Break
	Continue to Line
	Break In`
	View Code
	Print
	Print*
	Watch
	Watch*
	Change...
	Format

	Output Pane Popup Menu
	Print
	Print*
	Watch
	Watch*
	Change...
	Format
	Erase

	Command Push Buttons
	Step Into
	Step Over
	Continue
	Return
	Restart
	Stack Trace
	Toggle Source
	Show Current

	Command Entry Text Field
	Using the Command Entry Text Field

	Chapter Four: Running Fx
	Preparing Your Program for Debugging
	The -g Option

	Starting an Fx Debugging Session
	Loading a Program for Debugging
	Executable File Text Field
	Core File Text Field
	Source Path(s) Text Field
	Working Directory Text Field
	Using the Selection Dialogs

	Executing Fx Commands During Initialization
	About .fxinit
	A Sample .fxinit File

	Restarting A Debugging Session
	The Reinit... Menu Item

	Debugging with Core Files
	Using Core Files

	Examining Source Code
	Viewing Program Source Files
	Viewing Other Files
	Viewing Procedures
	Viewing Execution Status

	Recreating a Debugging Session
	Using the Log Selection
	Using the Read Item

	Chapter Five: Executing Programs in Fx
	Executing Single Statements
	The Step Into Button
	The Step Over Button
	Returning from Subroutines

	Using Breakpoints
	Using the Source Pane Popup Menu to Set Breakpoints
	Setting a Breakpoint on a Source Line
	Setting a Breakpoint in a Procedure

	Setting a Breakpoint with the Breakpoint Menu
	Location Text Field
	Associate Text Field
	Skip Counts

	Listing Breakpoints
	Removing Breakpoints

	Executing Programs
	Using the Run... Menu Item
	Using the Continue Button

	Animating Program Execution
	Start Walk Dialog
	Stop Walk Dialog

	Calling Program Procedures
	Using the External Procedure... Menu Item
	Setting Breakpoints in External Procedure

	Chapter Six: Working with Variables
	Displaying Program Variables
	The Print and Print* Menu Items
	Displaying Arrays, Structures and Unions
	Setting Formats
	Evaluating Expressions

	Watch and Watch* Menu Items
	The Symbol Browser
	Global Symbols
	Local Symbols
	Static Symbols
	Setting Formats and Sizes

	Modifying Variables
	The Change... Menu Item

	Finding Overwritten Variables
	Using Variable Monitors
	Removing Monitors
	Listing Monitors

	Chapter Seven: Assembly Language Debugging
	Using Fx Commands at the Assembly Level
	Examining Assembly Language Code
	Resuming Program Execution
	Setting Breakpoints at the Assembly Level

	Displaying and Changing Registers
	Displaying Program Memory
	Monitoring Registers and Memory Locations

	Chapter Eight: Command Arguments
	Identifier Scoping
	Implicit Scoping
	Explicit Scoping

	Specifying Symbols
	Symbol Names
	Fortran Symbols
	Fortran Data Types
	Fortran Subroutines and Functions
	Fortran Common Blocks
	Fortran Local Variables and Procedure Arguments
	Fortran Array Indexing
	Fortran Character Substrings

	C Symbols
	C Data Types
	C Functions
	C Extern Variables
	C Static Variables
	C Automatic Variables
	C Array Indexing and Pointer Dereferencing
	C Structure and Union Members

	Specifying Constants
	Integer Constants
	Decimal Constants
	Binary Constants
	Octal Constants
	Hexadecimal Constants

	Floating Point Constants
	Complex Constants
	Character String and C Character Constants

	Specifying Registers
	Expression Interpretation
	Current Expression Language
	Default Expression Language
	Supported Language Operators
	Fortran Operators
	C Operators
	Fortran Intrinsic Functions

	Value Expressions
	Address Expressions
	Operand Interpretation

	Chapter Nine: Command Reference
	!: Executing system commands
	associate: Executing commands at breakpoints
	break: Setting breakpoints
	change: Modifying variables
	close: Closing Fx windows
	continue: Resuming program execution
	Delete: Removing all breakpoints
	delete: Removing specific breakpoints
	dump: Displaying program memory
	dynamic: Automating Fx windows
	external: Executing procedures out of sequence
	filestatus: Displaying Fortran I/O unit information
	go: Resuming program execution
	help: Getting Help
	Instruction: Stepping over assembly language procedures
	instruction: Executing single instructions
	keep: Causing Fx windows to remain visible
	kill: Terminating the current program
	list ascii: Displaying ASCII table
	list breakpoints: Displaying current breakpoints
	list control: Displaying Fx control variables
	list entries: Displaying entry point information
	list file: Displaying any file
	list globals: Displaying global symbol information
	list locals: Displaying local variable information
	list monitors: Displaying current monitors
	list signal: Displaying current signal status
	list statics: Displaying static symbol information
	log: Writing Fx commands to a file
	monitor: Stopping execution when a variable changes
	next: Scrolling source windows
	output: Displaying program output
	previous: Scrolling source windows
	print: Displaying program variables
	quit: Ending a debugging session
	read: Reading Fx commands from a file
	registers: Displaying machine registers
	reinit: Switching programs to debug
	Return: Returning from the current subroutine
	run: Starting and restarting program execution
	scope: Accessing variables in recursive procedures
	search: Finding strings in source windows
	section: Displaying arrays
	shift: Scrolling source windows
	signal: Controlling signal actions
	size: Resizing Fx windows
	sleep: Delaying command execution
	Step: Stepping over procedure calls
	step: Executing single source statements
	trace: Displaying a stack trace
	unmonitor: Removing monitors
	unwatch: Removing watch variables
	update: Refreshing Fx display
	View: Displaying assembly language code
	view: Displaying source code
	walk: Repeatedly executing Fx commands
	watch: Observing program variables

	Appendix A: The Fx Character Interface
	Starting the Character Interface
	Preparing Your Program for Debugging
	Starting an Fx Debugging Session
	Command Line Syntax
	Sample Command Lines
	Warnings and Progress Information
	Specifying a Core File
	Specifying Multiple Source Directories
	Interception of Terminal Input/Output
	Interception of Fortran I/O gotos
	Debugging Curses Applications
	Altering Option Defaults

	Character Interface Tutorial
	Character Interface Windows
	The Source Window
	The Command Window
	The Status Window
	Display Windows

	Setting Breakpoints
	Executing Programs
	Printing Variables
	Executing Single Statements
	Dreferencing C Variables
	Watching Variables
	Keeping Display Windows Visible
	Making Display Windows Dynamic
	Resizing Display Windows
	Closing Display Windows

	Changing the Value of Variables
	Exiting from the Character Interface

	Using the Keyboard
	Using Function Keys

	Appendix B: Fx Control Variables
	Appendix C: Debugging Optimized Code
	Why Optimized Code is a Problem
	Code Elimination Optimizations
	Memory and Register Optimizations
	Peephole Optimization

	Index

