Absoft Support Libraries

Aids to porting to/from UNIX, VAX/VMS

abssit

development tools and languages

2781 Bond Street
Rochester Hills, M1 48309
U.S.A.

Tel (248) 853-0095

Fax (248) 853-0108
support@absoft.com

part of this publication may be reproduced or used in any form by any means, without the prior written permission of Absoft Corporation.

THE INFORMATION CONTAINED IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE AND RELIABLE. HOWEVER,
ABSOFT CORPORATION MAKES NO REPRESENTATION OF WARRANTIES WITH RESPECT TO THE PROGRAM MATERIAL
DESCRIBED HEREIN AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE. FURTHER, ABSOFT RESERVES THE RIGHT TO REVISE THE PROGRAM MATERIAL AND
MAKE CHANGES THEREIN FROM TIME TO TIME WITHOUT OBLIGATION TO NOTIFY THE PURCHASER OF THE REVISION
OR CHANGES. IN NO EVENT SHALL ABSOFT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE PURCHASER'S USE OF THE PROGRAM MATERIAL.

U.S. GOVERNMENT RESTRICTED RIGHTS — The software and documentation are provided with RESTRICTED RIGHTS. Use,
duplication, or disclosure by the Government is subject to restrictions set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and
Computer Software clause at 252.227-7013. The contractor is Absoft Corporation, 2781 Bond Street, Rochester Hills, Michigan 48309.

ABSOFT CORPORATION AND ITS LICENSOR(S) MAKE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THE SOFTWARE. ABSOFT AND ITS LICENSOR(S) DO NOT WARRANT, GUARANTEE OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS
CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED
BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL ABSOFT, ITS DIRECTORS, OFFICERS, EMPLOYEES OR LICENSOR(S) BE LIABLE TO YOU FOR ANY
CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE EVEN IF ABSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE
LIMITATIONS MAY NOT APPLY TO YOU. Absoft and its licensor(s) liability to you for actual damages for any cause whatsoever, and regardless
of the form of the action (whether in contract, tort, (including negligence), product liability or otherwise), will be limited to $50.

Absoft, the Absoft logo, Fx, and MacFortran are trademarks of Absoft Corporation

Apple, the Apple logo, and HyperCard are registered trademarks of Apple Computer, Inc.

CF90 is a trademark of Cray Research, Inc.

IBM, MVS, and RS/6000 are trademarks of IBM Corp.

Macintosh, NeXT, and NeXTSTEP, are trademarks of Apple Computer, Inc., used under license.
MetroWerks and CodeWarrior are trademarks of MetroWerks, Inc.

MS-DOS is a trademark of Microsoft Corp.

Pentium, Pentium Pro, and Pentium II are trademarks of Intel Corp.

PowerPC is a trademark of IBM Corp., used under license.

Sun and SPARC are trademarks of Sun Microsystems Computer Corp.

UNIX is a trademark of the Santa Cruz Operation, Inc.

VAX and VMS are trademarks of Digital Equipment Corp.

Windows NT, Windows 95, Windows 98, Windows 3.1, and Win32s are trademarks of Microsoft Corp.
All other brand or product names are trademarks of their respective holders.

Copyright © 1991-2002 Absoft Corporation and its licensor(s).
All Rights Reserved

Printed and manufactured in the United States of America. 2.0061802

L@ 5 7. N 0 L N 1

INTRODUCTION TO ABSOFT SUPPORT LIBRARIES........cccoiviireirnainnsnasnnns 1
About This Manual 1
Notational Conventions 1
L 5 7. N ol 0 2/ 3
USING THE SUPPORT LIBRARIES......ccoiiiiiiiriin s s s s s smss e 3
Compiler Options 3
Routines Returning Error Codes 4
Library Names 4
Example Using the Unix Library 4
Example Using the VMS Library 4
L 5 7. N ol 0 2 5
SUPPORT LIBRARIEScciieiiiiireiirenriinssssssses s ssssssssssnssssasssssssnsssnasssnsssnssss 5
VMS Library Routines 5
Unix Library Routines 7

Fortran User Guide

CHAPTER 1

Introduction to Absoft Support Libraries

This manual describes the two support libraries that provide numerous helpful routines
for use with Absoft Fortran 77. These two libraries increase compatibility, allowing for
easier porting of code. The Unix library provides routines compatible with those
provided by Sun Microsystems for the Sun FORTRAN compiler. The smaller VMS
library has a few additional routines with calling conventions that match VAX
FORTRAN. None of the routines in this manual are part of the ANSI FORTRAN 77
standard and should be used with caution if portability between platforms is a concern.

Source code to all library routines is supplied in the example directories or folders of the
operating systems they are installed on.

ABOUT THIS MANUAL
This manual is a reference for using the routines provided in the Unix and VMS libraries.

Chapter 1 is a general introduction to the libraries. It explains the purpose and benefits of
the libraries. The notational conventions of the manual are also explained.

Chapter 2 “Using the Support Libraries” discusses how to use the libraries, supplies
helpful hints, and provides some examples on using the routines.

Chapter 3 “Support Libraries” lists all of the routines provided, gives a general
description of their function, and states how they should be used.

NOTATIONAL CONVENTIONS
The following notation will be used in this manual.
computer font will be used for system generated text (examples, file names,
variable names, types, etc.). It should be entered exactly as shown.
If input and output appear together, the input will be boldfaced.
-option font indicates a compiler option.
italicized terms may be replaced by anything which fits the definition. For
example, a FORTRAN type could be REAL, INTEGER, etc. It is also

used for Unix command names.

[optional] terms enclosed in square brackets are optional.

Absoft Fortran 77 Compatibility Libraries

CHAPTER 2

Using the Support Libraries

This chapter discusses how to use the libraries and general rules that should be followed
to insure they are being used properly. The first section details compiler options that
should be used when linking with the Unix and VMS libraries. The second section shows
examples of compiling code that use these libraries.

NOTE: Some of the routines found in the Unix library may not be available on all
operating systems (eg. topen, tclose, tread).

A reEADME file may be included with these libraries. It contains information specific to
Absoft Fortran 77 regarding routines implemented differently on various systems and
additional libraries that must be linked to insure proper routine results.

COMPILER OPTIONS

The routine names in the libraries are provided in three spellings to avoid conflicts with
other libraries; all uppercase, all uppercase with a trailing underscore, and all lowercase
with a trailing underscore:

TIME
TIME
time

You can use any of these entry point names to access the functions in the libraries. Refer
to your compiler User Guide to select appropriate compile time options to automatically
achieve these spellings.

When porting code from another system, the -8 option is recommended when compiling.
This option causes all local variables to be stored statically, which is the default on many
systems. Without the -8 option, variables local to functions and subroutines will be stored
dynamically.

Two additional options helpful when porting code, but not necessary when using these
libraries, are -N3 and -N51. The -N3 option includes record length information for
SEQUENTIAL, UNFORMATTED files. The -N51 option causes the RecL specifier to be
interpreted as the number of 32-bit words in a record.

Absoft Fortran 77 Compatibility Libraries

4 Using the Support Libraries

ROUTINES RETURNING ERROR CODES
Some of the routines in the Unix library return error codes if the call is not successful.

The perror, gerror and ierrno routines will assist in determining the meaning of
these error codes. This makes it easier to resolve why the error code was returned.

LIBRARY NAMES

The names of the libraries and the directories they are installed in are consistent with the
operating system they are implemented on. The following library names are used:

Library Windows Mac Classic Max OS X Linux
Unix unix.lib unixlib.o 1ibU77.a 1ibU77.a
VMS vms.lib vmslib.o 1ibV77.a 1ibVv77.a

EXAMPLE USING THE UNIX LIBRARY

As an example, this small program calls the s1eep function that is in the Unix library:

WRITE (*,*) "Sleeping for a second..."
CALL sleep(1l)

WRITE (*,*) "Awake again!"

END

It can be compiled with the following command line:

£f77 -N109 sleep.f unix.lib
EXAMPLE USING THE VMS LIBRARY

The VMS library has some cHARACTER-based time and date routines. This example calls
the date subroutine:

CHARACTER*9 todays_ date

CALL date(todays date)

WRITE (*,*) "Today is ", todays date
END

It can be compiled with the following command line:

£77 -N109 today.f vms.lib

Absoft Fortran 77 Compatibility Libraries

CHAPTER 3

Support Libraries

This chapter lists the routines contained in the Unix and VMS libraries. A description of
the routine and a small example are provided. References are also provided to indicate
additional areas that will provide further information.

VMS LIBRARY ROUTINES

date

subroutine date (string) (VMS compatible)
character*9 string

The date subroutine sets string to the current date in a format like “26-Mar-

subroutine idate (month, day, year) (VMS compatible)

subroutine sets the month, day, and year for the current date.

91”.
Example: character*9 the date
call date(the date)
idate
integer*4 month, day, year
The idate
Example: integer*4 month, day, year
call idate (month, day, year)
mvbits

subroutine mvbits (source, startl, len, (VMS compatible)
dest, start?2)
integer*4 source, startl, len, dest, start2

The mvbits subroutine is built into the Absoft FORTRAN 77 run time library and
can be used without linking the VMS library with -1v77. It is documented here
for completeness. This routine moves bits from source to dest. Len number of
bits are moved starting from bit start1 in source to start2 in dest. The mvbits

subroutine

Example:

is compatible with MIL-STD-1753.

integer*4 source, middlelé6
call mvbits (source, 8, 16, middlelé6, 0)

Absoft Fortran 77 Compatibility Libraries

6 Support Libraries

ran real*4 ran (seed) (VMS compatible)
integer*4 seed
The ran function returns a random number between 0.0 inclusive and 1.0 exclu-
sive. The argument seed must be a variable, array element, or RECORD element,
and not a constant.
Example: real*4 ran, result
integer*4 seed/760013/
result = ran(seed)
secnds real*4 secnds (base) (VMS compatible)
real*4 base
The secnds function returns the time, in seconds, since midnight minus the argu-
ment base.
Example: real*4 secnds, diff, start
start = secnds (0)
diff = secnds(start)
time subroutine time (string) (VMS compatible)

character*8 string

The time subroutine sets string to the current time in a format like “13:08:56”.

Example:

character*8 the time
call time (the time)

Absoft Fortran 77 Compatibility Libraries

Support Libraries 7

UNIX LIBRARY ROUTINES

abort

access

alarm

subroutine abort

The abort subroutine closes all FORTRAN units and aborts execution causing a
core dump. See also abort(3).

integer*4 function access (name, mode)
character* (*) name, mode

The access function determines if the specified file name can be accessed with
the mode derived from one or more of the following:

r read permission
w Write permission

x execute permission

The return code is 0 if the file can be accessed in the specified modes. An error
code is returned otherwise. See also access(2).

Example: integer*4 access
if (access('test file', 'rw') .eq. 0)

integer*4 function alarm(time, sbrtn)
integer*4 time
external sbrtn

The alarm function schedules to have the subroutine sbrtn called after time sec-
onds. A time of 0 will turn off a pending alarm and the return value will be the
time that was remaining. See also alarm(3) and the signal function.

Exanqﬂe: integer*4 alarm, i
external alarm sub
i = alarm(30, alarm sub)

subroutine alarm sub ()
end

Absoft Fortran 77 Compatibility Libraries

8

Support Libraries

bic

bis

bit

chdir

subroutine bic (bitnum, word)
integer*4 bitnum, word

The bic subroutine clears the single bit bitnum in word. Using the intrinsic
function IBCLR () is more efficient and more compatible than the bic subroutine.

Example: integer*4 negative
call bic (31, negative)

subroutine bis (bitnum, word)
integer*4 bitnum, word

The bis subroutine sets the single bit bitnum in word. See also the setbit
function. Using the intrinsic function IBSET () is more efficient and more
compatible than the bis subroutine.

Example: integer*4 positive
call bis (31, positive)

logical function bit (bitnum, word)
integer*4 bitnum, word

The bit function returns .true. if bit bitnum is set in word otherwise, it returns
.false.. Using the intrinsic function BTEST () is more efficient and more
compatible than the bit function.

Exanqﬂe: integer*4 either
logical bit
if (bit (31, either))

integer*4 function chdir (dirname)
character* (*) dirname

The chdir function changes the default directory to dirname when referencing
files. The return code is 0 if the directory change was successful. An error code is
returned otherwise. See also chdir(2), the getcwd function.

Exanqﬂe: integer*4 chdir
if (chdir('/home') .eq. 0)

Absoft Fortran 77 Compatibility Libraries

Support Libraries 9

chmod integer*4 function chmod (name, mode)
character* (*) name, mode

The chmod function changes the filesystem mode for the file name. The mode may
be any string that is acceptable to the chmod(1) command. The return code is 0 if
the directory change was successful. An error code is returned otherwise. See also

chmod(1).
Example: integer*4 chmod
if (chmod('test file', 'oug+r') .eq. 0)
ctime character*24 function ctime (stime)

integer*4 stime

The ctime function returns the date and time of the system time stime as a
CHARACTER*24 string in a format like “Sun Sep 16 01:03:52 1973”. See also
ctime(3) and the time function.

Example: character*24 the date, ctime
the date = ctime (670000000)
write(*,*) "Written on: ", the date

dflmax real*8 function dflmax()

The dfimax function returns the maximum positive real*8 number. See also the
dflmin function.

Exanqﬂe: real*8 max, dflmax
max = dflmax ()
write (*,*) "Maximum REAL*8 is: ", max

dflmin real*8 function dflmin ()

The dfimin function returns the minimum positive real*8 number. See also the
dflmax function.

Exanqﬂe: real*8 min, dflmin
min = dflmin ()
write(*,*) "Minimum REAL*8 is: ", min

Absoft Fortran 77 Compatibility Libraries

10

Support Libraries

drand

dtime

etime

real*8 function drand(flag)
integer*4 flag

The drand function returns a random real*s number between 0.0 and 1.0
according to flag. See also the rand function which returns real+*4 numbers.

flag action

0
1

returns next random number in sequence
restart generator and return first number of sequence

other seed generator with flag and return first number of new

Example:

sequence

real*8 number, drand
number = drand(0)
write (*,*) "Random number is: ", number

real*4 function dtime (tarray)
real*4 tarray(2)

The dtime function returns the elapsed time, in seconds, since the previous call to
dtime or since the start of execution on the first call. On return, the first element
of tarray contains the elapsed user time and the second contains the elapsed
system time. The return value is the sum of these two times. See also the etime

function.

Example:

real*4 dtime
real*4 tarray(2), total
total = dtime (tarray)

real*4 function etime (tarray)
real*4 tarray(2)

The etime function returns the elapsed time, in seconds, since the start of execu-
tion. On return, the first element of tarray contains the elapsed user time and the
second contains the elapsed system time. The return value is the sum of these two
times. See also the dtime function.

Example:

real*4 etime
real*4 tarray(2), total
total = etime (tarray)

Absoft Fortran 77 Compatibility Libraries

Support Libraries 11

exit

fdate

fgetc

subroutine exit (status)
integer*4 status

The exit subroutine closes all FORTRAN units and exits the program. The sta-
tus 1s returned to the parent process which may be the command shell. See also
exit(2).

Example: if (errors) then
exit (1)
else
exit (0)
end if

subroutine fdate (string) (subroutine interface)
character*24 string

or
character*24 function fdate() (function interface)

The fdate subroutine returns the current date and time in a CHARACTER*24 string
in a format like “sun Sep 16 01:03:52 1973”. This routine may be called as a
function or subroutine. See also ctime(3).

Example: character*24 the date
call fdate (the date)
write(*,*) "Today is: ", the date

integer*4 function fgetc(lunit, char)
integer*4 lunit
character char

The fgetc function returns in char the next character from the file associated
with the FORTRAN unit 1unit. Because normal FORTRAN I/O is bypassed, it is
not recommended mixing standard FORTRAN I/O with this function. A return
code of 0 indicates success, -1 indicates that the end of the file has been reached,
and positive values are error codes. See also gefc(3) and the getc function.

Example: integer*4 test, fgetc
character c¢
open (unit=1, file="test file")
test = fgetc(l, <)

Absoft Fortran 77 Compatibility Libraries

12 Support Libraries
flmax real*4 function flmax ()
The fimax function returns the maximum positive real*4 number. See also the
inmax and f1lmin functions.
Exanqﬂe: real*4 max, flmax
max = flmax ()
write (*,*) "Maximum REAL*4 is: ", max
flmin real*4 function flmin ()
The fimin function returns the minimum positive real*4 number. See also the
flmax function.
Example: real*4 min, flmin
min = flmin ()
write (*,*) "Minimum REAL*4 is: ", min
flush subroutine flush (lunit)
integer*4 lunit
The f£1ush subroutine flushes the file buffers for the FORTRAN unit Iunit.
Example: call flush (1)
fork integer*4 function fork()

The fork function creates a child process which is an exact copy of the calling
process. All FORTRAN units are flushed before the fork is made. The return code
is negative if the call was not successful. See fork(2) for a complete description
and see the perror function for error reporting.

Example: integer*4 test, fork
test = fork()

Absoft Fortran 77 Compatibility Libraries

Support Libraries 13

fputc

free

fseek

integer*4 function fputc(lunit, char)
integer*4 lunit
character char

The fputc function writes the character char to the file associated with the
FORTRAN unit 1unit. Because normal FORTRAN /O is bypassed, it is not rec-
ommended mixing standard FORTRAN I/O with this function. The return code is
0 if successful and an error code otherwise. See also putc(3) and the putc
function.

Example: integer*4 test, fputc
open (unit=1, file="test file")
test = fputc(l, 'a')

subroutine free(pointer)
integer*4 pointer

The free subroutine frees a block of memory at pointer that was allocated by a
previous call to the malloc function. See also the malloc function for an
example.

integer*4 function fseek(lunit, offset, from)
integer*4 Iunit, offset, from

The fseek function changes the current file position of the FORTRAN unit
1unit. The offset is relative to the position specified by from:

0 beginning of the file
1 current file position

2 end of the file

The return code is 0 if the call was successful. It is not recommended mixing
standard FORTRAN I/O with this function. See also Iseek(2) and the ftell
function.

Example: integer*4 fseek
test = fseek(l, 1000, 0)

Absoft Fortran 77 Compatibility Libraries

14

Support Libraries

fstat

ftell

integer*4 function fstat(lunit, iarray)
integer*4 lunit
integer*4 iarray(13)

The £stat function returns statistics about the file associated with the FORTRAN
unit 1unit. The array iarray is filled with the following information:

iarray index description

1 device on which the file resides

2 the serial number for the file (inode)
3 file mode

4 number of hard links to the file

5 user ID of file owner

6 group ID of file owner

7 device identifier (devices only)

8 size, in bytes, of file

9 last file access time

10 last file modify time

11 last file status change time

12 preferred block size for this file system
13 actual number of blocks allocated

The return code is 0 if successful and an error code otherwise. See also sta#(2) and
the stat and 1stat functions.

Example:

integer*4 test, fstat

integer*4 array(13)

open (unit=1, file="test file")

test = fstat(l, array)

write(*,*) "File size is: ", array(8)

integer*4 function ftell (lunit)
integer*4 Iunit

The ftell function returns the current file position as an offset in bytes from the
beginning of the file. The return code is 0 or positive if the call was successful.

See also Iseek(2) and the fseek function.

Example: integer*4 ftell, position
position = ftell (1)

Absoft Fortran 77 Compatibility Libraries

Support Libraries 15

gerror

subroutine gerror (string) (subroutine interface)
character* (*) string

or
character* (*) function gerror () Ohncﬁonin&xﬁwe)

The gerror subroutine returns the most recently encountered system error
message in string. This routine may be called as a function or subroutine. See
also the perror and ierrno functions.

Example: integer*4 test, chdir
character*100 the error
test = chdir ("/bad directory")
if (test .ne. 0) then
call gerror(the error)
end if

getarg subroutine getarg(k, arg)

getc

integer*4 k
character* (*) arg

The getarg subroutine gets the kth argument from the command line and copies
it into arg. For the following command line,

a.out first second third

the Oth argument is 'a.out', the Istis 'first', and so on. Use the iargc function
to get the total number of arguments available.

Example: character*100 string
call getarg (0, string)
write(*,*) "This executable is: ", string

integer*4 function getc(char)
character char

The getc function returns in char the next character from the file associated with
FORTRAN unit 5 which is usually standard input. Because normal FORTRAN
I/O is bypassed, it is not recommended mixing standard FORTRAN /O with this
function. A return code of 0 indicates success, -1 indicates that the end of the file
has been reached, and positive values are error codes. See also gefc(3) and the
fgetc function.

Example: integer*4 test, getc
character c¢
open (unit=5, file="test file")
test = getc(c)

Absoft Fortran 77 Compatibility Libraries

16 Support Libraries

getcwd integer*4 function getcwd(dirname)
character* (*) dirname

The getcwd function returns the current working directory pathname in dirname.
A return code of 0 indicates success, otherwise an error occurred. See also

getwd(3) and the chdir function.

Example: integer*4 test, getcwd
character*100 path
test = getcwd (path)

getenv subroutine getenv (ename, evalue)
character* (*) ename, evalue

The getenv subroutine returns in evalue the string associated with the environ-
ment variable ename. If an environment variable is not found, evalue is filled

with blanks. See also getenv(3).

Example: character*100 string
call getenv ("TERM", string)
write (*,*) "Terminal type is: ", string

getfd integer*4 function getfd(lunit)
integer*4 Iunit

The get£d function returns the file descriptor associated with the FORTRAN unit

1unit. If the unit is not connected, -1 is returned. See also open(2).

Example: integer*4 fd, getfd
fd = getfd(5)

getlog subroutine getlog (name)
character* (*) name

The getlog subroutine returns in name the user's login name.

getlogin(3).

Example: character*100 my name
call getlog(my name)
write(*,*) "Currently logged in as: ", my name

See also

Absoft Fortran 77 Compatibility Libraries

Support Libraries 17

getgid integer*4 function getgid()

The getgid function returns the group ID number of the current process. See also
getgid(2).

Example: integer*4 getgid, my gid
my gid = getgid()
write(*,*) "My group ID is: ", my gid

getpid integer*4 function getpid()

The getpid function returns the ID number of the current process. See also
getpid(2).

Example: integer*4 getpid, my pid
my pid = getpid()
write(*,*) "My process ID is: ", my pid

etuid integer*4 function getuid()
g

The getuid function returns the user ID number of the current process. See also
getuid(2).

Example: integer*4 getuid, my uid
my uid = getuid()
write(*,*) "My user ID is: ", my uid

time subroutine gmtime (stime, tarray)
gm

integer*4 stime

integer*4 tarray(9)

The gmtime function returns information about the system time stime in the array
tarray as follows. The GMT time zone is used.

tarray index description
seconds

minutes

hours (GMT)

day of the month
month of the year
year (0 is 1900)
day of the week
day of the year

1 if DST is in effect

OW 0 J o U b W N -

Absoft Fortran 77 Compatibility Libraries

18 Support Libraries

See also ctime(3), the 1time function and the time function.

Example: integer tarray(9)
call gmtime (670000000, tarray)
write (*,*) "Year written is: ", 1900 + tarray(6)

hostnm integer*4 function hostnm (name)
character* (*) name

The hostnm function sets the name of the host in name. The return code is 0 if
successful. See also gethostname(2) and uname(2).

Example: integer*4 test, hostnm
character*100 string
test = hostnm(string)
write(*,*) "The host name is: ", string

iargc integer*4 function iargc()

The iargc function returns the number of arguments on the command line minus
one. For the following command line,

a.out first second third

the value returned by iargc is 3. To get the arguments themselves, use the
getarg function.

Example: integer*4 iargc
write (*,*) "Number of arguments: ", iargc()

idate subroutine idate (iarray)
integer*4 iarray(3)

The idate subroutine fills the array iarray with the following values:

iarrayindex description range

1 day 1-31
2 month 1-12
3 year 1900+

See also the fdate subroutine in this library and the idate subroutine in the VMS
library which has different calling conventions that are compatible with VAX
FORTRAN.

Absoft Fortran 77 Compatibility Libraries

Support Libraries 19

Example: integer*4 iarray(3)
call idate (iarray)

ierrno integer*4 function ierrno ()

inmax

The ierrno function returns the most recently encountered system error number.
Do not use the return value to determine if an error had occurred. See also the
perror and gerror functions.

Exanqﬂe: integer*4 last error, ierrno
last error = ierrno()

integer*4 function inmax()

The inmax function returns the maximum positive integer. See also the f1max and
f1min functions.

Exanqﬂe: integer*4 max, inmax

max = inmax ()
write (*,*) "Maximum integer is: ", max
ioinit logical function ioinit(cctl, bzro, apnd, prefix, vrbose)

logical cctl, bzro, apnd, vrbose
character* (*) prefix

The ioinit function opens FORTRAN units with file names obtained from a set
of environment variables composed of the characters prefix followed by a two-
digit FORTRAN unit number. Some characteristics of how each file is opened are
determined from the logical flags:

flag meaning when .true. meaning when .false.
cetl ACTION='PRINT' ACTION='BOTH'

bzro BLANK='ZERO' BLANK='NULL'

apnd POSITION='APPEND' POSITION='ASIS'

The vrbose flag, when .true., causes the ioinit function to display its activity
on standard error.

As an example, if the following environment variables are set-up,

setenv FILEOl data filel
setenv FILEO2 data file2

Absoft Fortran 77 Compatibility Libraries

20 Support Libraries

the following call opens the files data filel and data file2 on units 1 and 2,
respectively.

call ioinit(.false., .false., .false., 'FILE', .false.)

The ioinit function only opens files, and the flags do not effect any other files
opened with the FORTRAN OPEN statement. The return code is always . true..

irand integer*4 function irand(flag)
integer*4 flag

The irand function returns a random integer*4 number between O and the
largest integer according to flag.

flag action

0 returns next random number of sequence

1 restart generator and return first number of sequence

other = seed generator with flag and return first number of new
sequence

See also the rand function which returns real*4 numbers.

Exanqﬂe: integer*4 number, irand
number = irand(0)
write (*,*) "Random number is: ", number

isatty logical*4 function isatty(lunit)
integer*4 Iunit

The isatty function returns .true. if a terminal device is connected to the
FORTRAN unit 1unit. In Absoft FORTRAN 77, preconnected units are not
assigned to a device until referenced. See also ttynam(3) and the ttynam function.

Example: logical*4 isatty
if (isatty(1l))

itime subroutine itime (iarray)
integer*4 iarray(3)

The itime subroutine fills the array iarray with the following values:

Absoft Fortran 77 Compatibility Libraries

Support Libraries 21

iarray index description range

1 hour 0-23
2 minute 0-59
3 second 0-59

See also the ctime subroutine in this library and the time subroutine in the VMS
library.

Example: integer*4 iarray(3)
call itime (iarray)

kill integer*4 function kill (pid, signum)
integer*4 pid, signum
The kxi11 function sends the signal signum to the process pid. The return code is
0 if successful and an error code otherwise. See also kill(2) and for a list of
signals see sigvec(2).
Example: integer*4 test, kill
test = kill (123, 9)
link integer*4 function link(namel, name?2)
character* (*) namel, nameZ
The 1ink function creates a link of the file name1 to the new file name2. The
return code is 0 if successful and an error code otherwise. See also /ink(2) and the
symlnk function.
Example: integer*4 test, link
test = link("test file", "new file")
lnblnk integer*4 function lnblnk(string)

character* (*) string
The 1nblnk function returns the index of the last non-blank character in string.

Exanqﬂe: integer*4 1lnblnk, lastnb
lastnb = 1lnblnk('Hello world ')

Absoft Fortran 77 Compatibility Libraries

22

Support Libraries

long

lstat

integer*4 function long(int2)
integer*2 int2

The 1ong function converts its integer*2 argument int2 into an integer*4
value. To avoid conflict with the intrinsic function long() in Absoft
FORTRAN 77, you must declare this function as external before use:

external long

Example:

integer*4 result, long
integer*2 i2

external long

result = long(i2)

integer*4 function lstat (name, iarray)
character* (*) name
integer*4 iarray(1l3)

The 1stat function returns statistics about the file name. If name is a symbolic
link, information is returned about the link. The array iarray is filled with the
following information:

iarray index description

O o U W N

O

10
11
12
13

device on which the file resides

the serial number for the file (inode)
file mode

number of hard links to the file

user ID of file owner

group ID of file owner

device identifier (devices only)

size, in bytes, of file

last file access time

last file modify time

last file status change time
preferred block size for this file system
actual number of blocks allocated

The return code is 0 if successful and an error code otherwise. See also stat(2) and
the stat and fstat functions.

Example:

integer*4 test, lstat

integer*4 array(13)

test = lstat("test file", array)
write(*,*) "File size is: ", array(8)

Absoft Fortran 77 Compatibility Libraries

Support Libraries 23

ltime

subroutine ltime (stime, tarray)
integer*4 stime
integer*4 tarray(9)

The 1time function returns information about the system time stime in the array
tarray as follows. The local time zone is used.

tarray index description

OW 0 J o U b W N -

seconds

minutes

hours (local time zone)
day of the month
month of the year

year (0 is 1900)

day of the week

day of the year

1 if DST is in effect

See also ctime(3) and the time function.

Example:

integer tarray(9)
call 1time (670000000, tarray)
write (*,*) "Year written is: ", 1900 + tarray(6)

malloc

integer*4 function malloc(size)
integer*4 size

The malloc function allocates a block of memory containing size bytes. Zero is
returned if the allocation could not be made. This function is most useful when it
is declared as a pointer as in the example below. See also the free function.

Example: STRUCTURE /str/

integer*4 first element
integer*4 second element
END STRUCTURE
RECORD /str/ my struct
POINTER (pmy struct, my struct)
INTEGER malloc result
POINTER (malloc, malloc result)
pmy struct = malloc(1000)

call free(pmy struct)

Absoft Fortran 77 Compatibility Libraries

24 Support Libraries

perror subroutine perror (string)
character* (*) string

The perror subroutine writes the most recently encountered system error
message to FORTRAN unit 0 (standard error). The message is preceded by

string. See also the gerror and ierrno functions.

Example: integer*4 test, chdir
test = chdir("/bad directory")
if (test .ne. 0) then
call perror ("MyProgram")
end 1if

putc integer*4 function putc(char)
character char

The putc function writes the character char to the file associated with
FORTRAN unit 6 which is usually standard output. Because normal FORTRAN
I/O is bypassed, it is not recommended mixing standard FORTRAN /O with this
function. The return code is 0 if successful and an error code otherwise. See also

putc(3) and the fputc function.

Example: integer*4 test, putc
open (unit=6, file="test file")
test = putc('a')

gsort subroutine gsort (array, len, size, compare)
integer*4 lIen, size
external compare

The gsort subroutine sorts the first 1en elements of array by using the compari-

son routine compare defined below. See also gsort(3).

The byte size of each element is determined from the size argument:

Arra e Value for size argument
integer*2 2

integer*4 4

real*4 4

real*8 8

double precision 8

complex*8 8

complex*16 16

double complex 16

character length of character element

Absoft Fortran 77 Compatibility Libraries

Support Libraries 25

rand

The user supplied compare routine must return an integer*2 value as shown in
this example which compares two real*8 numbers:

integer*2 function real8 compare(first, second)
real*8 first, second

real8 compare = 1 ! first > second
if (first .eqg. second) real8 compare = 0 ! first = second
if (first .1lt. second) real8 compare = -1 | first < second
end

Example: real*s a(10)
external real8 compare
call gsort(a, 10, 8, real8 compare)

real*4 function rand(flag)
integer*4 flag

The rand function returns a random real*4 number between 0.0 and 1.0 accord-
ingto flag:

flag action

0 returns next random number of sequence

1 restart generator and return first number of sequence

other seed generator with flag and return first number of new
sequence

See also the irand function which returns integer*4 numbers and the drand
function which returns real*8 numbers.

Example: real*4 number, rand
number = rand(0)
write (*,*) "Random number is: ", number

rename

integer*4 function rename (from, to)
character* (*) from, to

The rename function changes the file name of the file from to to. If the file to
exists, it will first be removed. The return code is 0 if successful and an error code
otherwise. See also rename(2).

Example: integer*4 test, rename
test = rename ("test file", "new file")

Absoft Fortran 77 Compatibility Libraries

26 Support Libraries

rindex integer*4 function rindex(string, substr)
character* (*) string, substr

The rindex function is similar to the intrinsic function index, but it returns the
index of the last occurrence of substr in string. Zero is returned if the string is
not found.

Example: integer*4 rindex, first, last
first = index('llabllllablab', 'ab')
last = rindex('llabllllablab', 'ab'")

setbit subroutine setbit (bitnum, word, state)
integer*4 bitnum, word, state

The setbit subroutine sets the single bit bitnum in word only if state is non-
zero. Otherwise, the bit is cleared. See also the bic, bis, and bit functions.

Exanqﬂe: integer*4 either, flag
call setbit (31, either, flag)

short integer*2 function short (int4)
integer*4 int4

The short function converts its integer*4 argument int4 into an integer*2
value.

Example: integer*2 result, short
integer*4 i4
result = short (i4)

signal integer*4 function signal (signum, proc, flagqg)
integer*4 signum, flag
external proc

The signal function sets up a signal handling routine proc that is called when a
signal signum is received. When flag is -1, the signal handler is set-up. When
flag is 0 or positive, proc is ignored and the value of fiag is the signal
definition for the system. Specifically, when fiag is 0, the default action is taken
for signum signals. When flag is 1, the signal is ignored. A return code greater
than 1 is the address of the previous handler for signum. This may be used to
restore a previous signal handler. A negative return code is the negative error
code. See also signal(3) and the xi11 function.

Absoft Fortran 77 Compatibility Libraries

Support Libraries 27

sleep

stat

Example:

integer*4 test, signal
external handler
test = signal (14, handler, -1)

subroutine sleep (time)
integer*4 time

The sleep subroutine suspends execution for about time seconds. See also

sleep(3).

Example:

call sleep(4)

integer*4 function stat (name, iarray)
character* (*) name
integer*4 iarray(13)

The stat function returns statistics about the file name. The array iarray is filled
with the following information:

iarray index description

1 device on which the file resides

2 the serial number for the file (inode)
3 file mode

4 number of hard links to the file

5 user ID of file owner

6 group ID of file owner

7 device identifier (devices only)

8 size, in bytes, of file

9 last file access time

10 last file modify time

11 last file status change time

12 preferred block size for this file system
13 actual number of blocks allocated

The return code is 0 if successful and an error code otherwise. See also sta#(2) and
the 1stat and fstat functions.

Example:

integer*4 test, stat

integer*4 array(13)

test = stat("test file", array)
write(*,*) "File size is: ", array(8)

Absoft Fortran 77 Compatibility Libraries

28 Support Libraries
symlnk integer*4 function symlnk (namel, nameZ2)
integer*4 namel, name2
The symlnk function creates a symbolic link of the file name1 to the new file
name2. The return code is 0 if successful and an error code otherwise. See also
symlink(2) and the 1ink function.
Exanqﬂe: integer*4 test, symlnk
test = symlnk("test file", "new file")
system integer*4 function system(string)
character* (*) string
The system function executes the command line string in a shell. The return
code is the exit status of the shell.
Example: integer*4 test, system
test = system("ls -1")
tclose integer*4 function tclose(tlu)
integer*4 tlu
The tclose function closes the tape device associated with the t1u. The return
code i1s 0 if the call was successful. See also close(2), mtio(4), and the topen
function.
Example: integer test, tclose
test = tclose (0)
time integer function time ()

The time function returns the seconds since 00:00:00 GMT January 1, 1970,
measured in seconds. See also time(3), the ctime function, the gmtime function
and the 1time function.

Exanqﬂe: integer now, time
now = time ()

Absoft Fortran 77 Compatibility Libraries

Support Libraries 29

topen

integer*4 function topen(tlu, devname, islabeled)
integer*4 tlu

character* (*) devname

logical*4 islabeled

The topen function associates a logical tape unit (t1u) with a device devname.
The t1u may be 0 to 7 and is used in the other tape routines to reference the tape
device. The flag isiabeled should be set to .true. if the tape has a label. The
return code is 0 if the call was successful. See also open(2) and mtio(4).

Example: integer test, topen
test = topen(0, "/dev/rst0", .false.)

tread

integer*4 function tread(tlu, buffer)
integer*4 tlu
character* (*) buffer

The tread function reads a block of data into buffer from the tape device associ-
ated with the t1u. The return code is 0 if the call was successful. See also read(2),
mtio(4), and the topen function.

Example: integer test, tread
character*1024 buffer
test = tread (0, buffer)

trewin

integer*4 function trewin (tlu)
integer*4 tlu

The trewin function rewinds the tape device associated with the t1u. The return
code is 0 if the call was successful. See also ioctl(2) and mtio(4).

Example: integer test, trewin
test = trewin (0)

tskipf

integer*4 function tskipf(tlu, nfiles, nrecords)
integer*4 tlu, nfiles, nrecords

The tskipf function skips over nfiles end-of-file marks and then skips over
nrecords blocks of the tape device associated with the t1u. The return code is 0
if the call was successful. See also ioctl(2) and mtio(4).

Example: integer test, tskip
test = tskip (0, 0, 1)

Absoft Fortran 77 Compatibility Libraries

Support Libraries

integer*4 function tstate(tlu, fileno, recno, errf, eoff,
eotf, tcsr)

integer*4 tlu, fileno, recno

logical*4 errf, eoff, eotf

integer*4 tcsr

The tstate function returns information about the tape device associated with
the t1u:

fileno current file number
recno current record number
errf flagif an error had previously occurred
eoff flag if at the end-of-file. When .true., the tread function will
not work. This flag may be set to .false. by calling
tskipf (tlu, 1, 0).
eotf flag if at end-of-tape (not reliable)
tcsr contents of the tape control status register
The return code is 0 if the call was successful. See also ioct/(2) and mtio(4).
Example: integer*4 test, tstate
integer*4 fileno, recno, tcsr

logical*4 errf, eoff, eotf
test = tstate (0, fileno, recno, errf, eoff, eotf, tcsr)

ttynam character* (*) function ttynam(lunit)

integer*4 Iunit

The ttynam function returns the name of the terminal device connected to the
FORTRAN unit 1unit. If 1unit is not connected to a terminal device, blanks are
returned. In Absoft FORTRAN 77, preconnected units are not assigned to a
device until referenced. See also ttynam(3) and the isatty function.

Example: character*100 name
name = ttynam(1l)

Absoft Fortran 77 Compatibility Libraries

Support Libraries 31

twrite

integer*4 function twrite(tlu, buffer)
integer*4 tlu
character* (*) buffer

The twrite function writes a block of data from buffer to the tape device
associated with the t1u. The return code is 0 if the call was successful. See also
write(2), mtio(4), and the topen function.

Example: integer test, twrite
character*1024 buffer
test = twrite (0, buffer)

unlink

integer*4 function unlink (name)
character* (*) name

The unlink function removes the file name. The return code is 0 if successful and
an error code otherwise. See also unlink(2).

Example: integer*4 test, unlink
test = unlink("test file")

wait

integer*4 function wait (status)
character* (*) status

The wait function suspends execution until a signal is received or a child process
terminates. A positive return code is the process ID of a child and status is the
termination status. Otherwise, a negative return code is a negative error code. See
also wait(2) and the signal function.

Example: integer*4 test, wait, status
test = unlink(status)

Absoft Fortran 77 Compatibility Libraries

A
abort function ..., 7
access functioN....cceeceiviecicinicene, 7
alarmfunction ..., 7
argunents, command line....... 15
argunents, nunber of ... 18
B
bic subroutine .., 8
bis subroutine .., 8
bit funCtion ., 8
bl anks, finding lastccoeinenne. 21
C
changing current directory....... 8
chdir function .., 8
chnmod function .., 9
clearing a bit ..o, 8
conmand |ine argunents ... 15
compiler options

-N109 option, case foldccoceervrirenrnnnn. 3

-N3 option, record lengthccceeurneenen. 3

-N51 option, 32 bit RECLc.ccoevvverrnnnne 3

-5 option, StaticC StOTage........ccoceevvereerueenieennen. 3
compiling with the Unix library...........ccccceeeeee. 4
compiling with the VMS librarycccceceeueenee. 4
conventions

notation in manualcccceevvierieeiieenieenans 1
ctime function ., 9
D
dat e

as VMB iNtegers . 5

as VVB StrinNg . 5

current in array ... 18
date subroutingccceeveeeevieevieeiireeeieecreeeee 4
date VMB function.......eeenne. 5
deleting files i 30
df l max function........evieneeeennne, 9
dflmin function.......nnnna, 9
directory, changing current ... 8
directory, getting current ... 16
drand function ..., 10
dtime function ... 10
E
envi ronnent variables........... 16, 19

33

EPOCH ..o 28
EITOT COUE...oeiiniiiiiiiie e 3
error nunber, system............... 19
errors, getting text ... 15
errors, printing text ... 23
etime functioneeieeveinenn. 10
examples

01017 15 (o) o W UR RO 1
executing system comand................. 27
exit subroutine....ieiinnnn. 11
F
fdate subroutine.......eeieenan. 11
fgetc function ...iiiiivicceciennnn. 11
file descriptor, getting.......... 16
file perm ssions

determning with access........... 7

setting with chnmod.........cccoevennnnn 9
file statiSticCS.oviiveiiieen. 14,22, 27
flmax function ..., 12
flmn function ..o, 12
flush subroutine......eee.ne. 12
fork function ..., 12
fputc function ..o, 13
free subroutine......ieveeiennne 13
fseek functioniievieciennnne, 13
fstat function ..o, 14
ftell function ., 14
G
EEITOT SUDTOULINEG ... 3,15
getarg subroutine............ 15
getc function......ooooieieiiiiiieecee, 15
getcwd function.....eiiiiiiieciecieie, 16
getenv subroutine............ 16
getfd function ..o, 16
getgid function.....oeeieiieicecnnn, 17
getlog subroutine.......... 16
getpid function....iiveeevieennn, 17
getuid function....ooeiiiieeiecceenn, 17
gntine subroutine ..., 17
group ID, getting . 17
H
handl er, setting signal 26
host nm funcCti oN ..o, 18

Absoft Fortran 77 Compatibility Libraries

1
iargc function.....cevvvieiecieieieenne, 18
idate subroutine......eeenenn. 18
idate VMBS function......eevveeeennnn. 5
1€1TNO0 fUNCHION ... 3,19
incompatibile Toutinescccceeveereververeeennene 3
index function.....iiiiinnn, 25
inmax function......ccceeieeeiiiiiee, 19
foinit function ...ooooovviiiiieiiiiee, 19
irand function........iinin. 20
isatty function ... 20
itinme subroutine......ccoooveeeiiivneeecn, 20
K
Kill function i, 21
L
libraries

Unix brary.......ccoceeeveeveereeeeeeeceeeeee 4

VMS HDraryc.oeveveenieeseeesie e 4
library Namesccceeeevrvecveeveeieneenieeneene e 4
link funCction.....ccoooivviiiiiiiiiiiiee, 21
linking the Unix librarycccocevveienennennen. 4
linking the VMS library.........ccccooevvevervenirennnne. 4
Inblnk function....cccoeeviiiiiiiiii, 21
login name, getting......... 16
long function....ocoeeviiiieiiiiceeae. 21
Istat function......iiiiiiiin, 22
[tinme subroutine.....iivieennn, 22
M
malloc function ...coooeoiiiiieiiee. 23
maxi mum i nt eger function.......... 19
maxi mum REAL*4 nunber ... 12
maxi mum REAL*8 number 9
menory allocation function......... 23
message sendi NGccceeeeveeeieieiennenne. 21
mi ni mum REAL*4 nunber 12
mi ni mum REAL*8 number ... 9
mvbits function ...ooooooiioiiiieee. 5
N
notation in ManuUalc.coovveeveveeeeeeereiieeeeeen. 1
P
pausi Ng executi oncccoeeeveenne. 26
PEITOr SUDTOULINGevveeeeeieiee e 3,23
POTtING COUCvieviiiiieieriieieeie et 3
process ID, getting..... 17

putc function ..iiiieiiiieeee, 24

0
gsort subroutine....ienn. 24
R
ran VIVB function.........eeveenenn. 6
rand function.........iiieiieenn. 25
random nunbers
doubl e precision.....evveene. 10
[] =Y o [U 20
single precision ... 25
VMS roUti NE oo 6
renmoving filesS ., 30
renane functionvvveeevenn. 25
rindex function ... 25
routine incompatibility.........ccccceevevreverveneenennn. 3
S
secnds VNS function........eeen. 6
sendi Ng MESSAJESccoeevevieeeeerieienenes 21
sethit subroutine.....evevenn. 26
settin a bit. e, 8
short function....iivieciiieiee, 26
signal function ... 26
signal, waiting for ... 31
sleep fUNCtion........ccceeveeviieiieiiciecece e 4
sleep subroutine........coeeveveene. 26
sorting array data......... 24
stat function.......viiiieiiiieinene. 27
Sun FORTRANoooviiiciecieeeeeeeeeeveeee e 1
support librariesccoeceveereeiieiene e 1
synmbolic 1inking.. .. 27
sym nk function ..o 27
syntax
notation in manual...........ccoeeevvvveiiiiiiinieneen.n. 1
system functionccceeviveniinciecnn. 27
T
tape, 0OpPeni Nccoevevececieeeeeeen 28
tclose function.....eeveeeeinene. 28
termnal device.evieeienn. 20, 30
tinme
as VMB String ., 6
current time as array 20
current time as string.......... 11
el apSed. ..o 10
el apsed since mdnight 6
GMT relati Ve oo 17
Sl €epi NG oo 26

Absoft Fortran 77 Compatibility Libraries

systemtine as array 22

systemtine as String......... 9

VMS function ..o, 6
time function. .., 28
topen functioneiiiieiiiiiiiennnn, 28
tread function........iiieereenn. 28
trewin function.........eeeenn. 29
tskipf function......iinn. 29
tstate function........vveeeeeeenen. 29
ttynam function.........eiiieienn, 30
twite function.......evveieeieeeenn. 30

U

UnixX lIBraryccoeeeeeveeiieiieiesieeeeee e 1
unlink function. ... 30
user ID, getting.eeeena. 17
V

VAX FORTRAN. ..ottt 1
VMS HDIary......cocveeveeeieeierieeienieeieeeeeveseeenieens 1
w

wait functioN...eeieeeee, 31
waiting for an alarm. ... 7

Absoft Fortran 77 Compatibility Libraries

	Absoft Support Libraries
	Table of Contents
	Chapter 1 Introduction to Absoft Support Libraries
	ABOUT THIS MANUAL
	NOTATIONAL CONVENTIONS

	Chapter 2 Using the Support Libraries
	COMPILER OPTIONS
	ROUTINES RETURNING ERROR CODES
	LIBRARY NAMES
	EXAMPLE USING THE UNIX LIBRARY
	EXAMPLE USING THE VMS LIBRARY

	Chapter 3 Support Libraries
	VMS LIBRARY ROUTINES
	UNIX LIBRARY ROUTINES

