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1 Introduction

Whenever a beam of charged particles is created inside a solenoidal field and subsequently
extracted, there is a loss in beam quality. Conversely, a beam not created in this way
suffers the same loss when injected axially into a solenoid. This is a phenomenon of very
common occurrence in beam physics. Examples are when beam exits an ECR ion source,
when a neutral beam is ionized inside a charge-exchange cell which has a solenoidal field
(e.g. for polarized sources), when a beam is injected along the axis of a cyclotron, and when
a secondary beam production target is placed inside a solenoid. Especially because of the
last example, it is important that experimenters understand the effect as well.

2 Canonical Momentum Derivation

The canonical momentum of a particle of charge q is

P=p+4A4, (1)
where 7 is the usual momentum, and A is the magnetic field’s vector potential. In a region
with no electric field the Hamiltonian is independent of position and so the canonical mo-

mentum is conserved. If a particle originates inside a magnetic field and travels to a point
well outside of it, it receives a change of (ordinary) momentum

Ap = gA. 2)

1



For a solenoid with magnetic field By, A has only a component in the azimuthal () direction

.
40 = 3Bo. ) (3)

So on exiting the solenoid at a radius r, the particle gets an azimuthal kick:
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It is often convenient to express the momentum as a ‘rigidity’ Bp = p/q. Then the angular
kick is expressed very simply as

T

where p is the radius of curvature that the particle would have if it were travelling with
momentum p, orthogonal to the field By.

3 ‘Gaussian’ Derivation

For those who find arguments based on Hamiltonian dynamics unconvincing, here is an
alternative which places the blame squarely on the Maxwell equation V- B = 0.

Take as Gaussian surface a truncated square circular cylinder of radius r coaxial with the
solenoid. One end is well inside the solenoid, where the field is By in the axial direction, and
the other is well outside, where the field is zero. Then over this surface,

}(ﬁ-d§=0 (6)

S0
nr?By = 27rr/Brdz. (7)

Simply put, all of the flux leaving the cylinder ‘cap’ inside the solenoid must have come
in through the sides of the cylinder. This means that there is an irreducible amount of
integrated radial magnetic fieid through the fringe field region:

/ B,dz = Bor/2. (8)

The effect in the fringe field on a particle of charge g travelling with axial velocity component
v, = dz/dt is to kick it sideways with a force

Fy = qu, B, = dps/dt, (9)
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or

dpe = ¢B,dz. (10)

The integrated kick in angle is therefore

dpy _ 4 gBor
6= =4 / Bdz=2121 11
/ pz pz pz 2 ( )
or, since Byp = p./q, we have simply
r
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4 Example (from p-u collider)

Muons of momentum 200 MeV /c are created inside a 20T solenoid field and extracted along
its axis through an aperture of radius 5mm. Bp = 200 M&/3 X 108 m/s = 0.67 T-m, and
so p = Bp/B = 33mm. The ‘spray’ angle of exiting particles is ¢ = 5mm/(2 x 33 mm) =
75 mrad, resulting in an emittance of (phase space area +m = r¢=) 375 mm-mrad.

5 Conclusion

It is important to understand that the only way to reduce the emittance growth €slencid =
r2/(2p) upon exiting axially from & solenoid is to reduce the aperture r. Yes, the fringe
field is at fault, but no amount of sweating over its shape is going to improve it. Does this
violate Liouville’s theorem? No. A zero emittance beam born inside the solenoid still has a
zero 4-dimensional phase space volume on extraction, but the z — p; and y — p, projections
are not zero. Instead, the z — py and y — Pz projections are zero. These couplings cannot
be corrected except by re-injecting into another solenoidal field. In effect, when extracting
from a solenoid the beam comes out spinning about the axis, and however the beam is
subsequently manipulated, this angular momentum cannot be made to disappear.






