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Abstract

Radiative corrections to the muon decay spectrum due to soft and virtual electron–
positron pairs are calculated.
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1 Introduction

The experiment T WIST [1,2] is currently running at Canada’s National Lab-
oratory TRIUMF. It is going to measure the muon decay spectrum [3,4] with
the accuracy level of about 1 ·10−4. That will make a serious test of the space–
time structure of the weak interaction. The experiment is able to put stringent
limits on a bunch of parameters in models beyond the Standard Model (SM),
e.g., on the mass and the mixing angle of a possible right–handed W -boson.
To confront the experimental results with the SM, adequately accurate the-
oretical predictions should be provided. This requires to calculate radiative
corrections within the perturbative Quantum Electrodynamics (QED). Here
we will present analytical results for two specific contributions, related to ra-
diation of virtual and soft real electron–positron pairs. The corrections under
consideration are of the order O (α2), where α is the fine structure constant.

The contributions of virtual µ+µ−, τ+τ− and hadronic pairs were found [5] to
be small compared with the 1 · 10−4 precision tag of the modern experiments.
The contribution of e+e− pairs is enhanced by powers of the large logarithm

1 A certain part of this work was performed in University of Alberta, Edmonton,
Canada
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L = ln(m2
µ/m2

e) ≈ 10.66. Analysis of the leading and next–to–leading terms
from this correction in Refs. [6,7] has shown that the numerical effect is not
as small as for other leptonic flavors, and it should be taken into account.
Comparison of the leading and next–to–leading contributions revealed a poor
convergence of the series in L. Calculation of the terms without the large
logarithm was found to be desirable.

Within the Standard Model, the differential distribution of electrons (summed
over electron spin states) in the polarized muon decay can be represented as

d2Γµ∓→e∓νν̄

dxdc
= Γ0 [F (x) ± cPµG(x)] , Γ0 =

G2
Fm5

µ

192π3
,

c = cos θ, x =
2mµEe

m2
µ + m2

e

, x0 ≤ x ≤ 1, x0 =
2mµme

m2
µ + m2

e

, (1)

where mµ and me are the muon and electron masses; GF is the Fermi coupling

constant; θ is the angle between the muon polarization vector ~Pµ and the elec-
tron (or positron) momentum; Ee and x are the energy and the energy fraction
of e±. Here we adopt the definition of the Fermi coupling constant following
Ref. [8]. Functions F (x) and G(x) describe the isotropic and anisotropic parts
of the spectrum, respectively. Within perturbative QED, they can be expanded
in series in α:

F (x) = fBorn(x) +
α

2π
f1(x) +

(

α

2π

)2

f2(x) +
(

α

2π

)3

f3(x) + O
(

α4
)

, (2)

and in the same way for G(x). Among different contributions into the functions
F (x) and G(x) (see Ref. [6] for details and discussion), there are ones related
to electron–positron pair production. In this Letter we will consider the effect
of soft and virtual e+e− pairs.

2 Soft e+e− Pairs

The process of real pair production does not reveal any infrared singularity,
contrary to the case of photon radiation. Nevertheless, a separate consideration
of soft pair emission can be of interest. In fact, e+e− pairs with energy below
a certain threshold can’t be observed in experiments with muons decaying at
rest. So, the corresponding contribution is a specific correction to the measured
decay spectrum. Moreover, the behavior of the real pair emission in the soft
limit is not smooth. An integration over the domain between the threshold of
real pair production and a certain cut on the maximal energy of the soft pair
is desirable.
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The maximal energy of the soft pair is assumed to be large compared with
the electron mass:

Epair ≤ ∆
mµ

2
,

me

mµ

� ∆ � 1. (3)

Due to the smallness of the pair component energies, the matrix element M
of the process

µ−(p) −→ e−(q) + νµ(r1) + ν̄e(r2) + e+(p+) + e−(p−) (4)

can be expressed as a product of the matrix element M0 of the hard sub–
process (the non–radiative muon decay) and the classic accompanying radia-
tion factor:

M = M0
4πα

k2
v̄(p+)γµu(p−)Jµ, k = p+ + p−, (5)

where p+,− are the momenta of the positron and electron from the created
pair. The radiation factor reads

Jµ =
pµ

pk − 1
2
k2

−
qµ

qk + 1
2
k2

. (6)

Performing the covariant integration of the summed over spin states modulus
of the matrix element over the pair components momenta, we obtain

∑

spin
|v̄(p+)γµu(p−)|2 = 4(pµ

+pν
− + pν

+pµ
− −

k2

2
gµν),

∫ d3p+d3p−

p0
+p0

−

δ4(p+ + p− − k)(pµ
+pν

− + pν
+pµ

− −
k2

2
gµν) =

=
(

−
2π

3
(k2 + 2m2

e)

√

1 −
4m2

e

k2

)

(gµν −
1

k2
kµkν). (7)

It is convenient to parameterize the phase volume of the total pair momentum
as

d4k = dk0k
2d|k|dΩk = πdk0dk2

√

k2
0 − k2 dck , (8)

where a trivial integration over the azimuthal angle was performed. Now I
integrate over the total pair momentum with the condition (3) (k0 ≡ Epair).
In this way I got the following result for the soft pair contribution:
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dΓSP

dc dx
=

dΓBorn

dc dx
δSP,

dΓBorn

dc dx
= Γ0 [f0(x) ± cPµg0(x)] + O

(

m2
e

m2
µ

)

,

f0(x) = x2(3 − 2x), g0(x) = x2(1 − 2x),

δSP =
α2

3π2

[

1

12
ln3 A −

2

3
ln2 A + ln A

(

61

18
− ζ(2)

)

−
223

27

+
8

3
ζ(2) + 2ζ(3)

]

, (9)

ln A = L + 2 ln∆, ζ(n) =
∞
∑

k=1

1

kn
, ζ(2) =

π2

6
.

So we calculated explicitly all the terms in δSP except the ones suppressed by
the small factors (α/π)2m2

e/m
2
µ and (α/π)2∆.

3 Virtual e+e− Pair

We will use here the substitution suggested by J. Schwinger for the photon
propagator (with 4–momentum k) corrected by a one–loop vacuum polariza-
tion insertion:

1

k2 − λ2 + i0
→

α

π

1
∫

0

dvφ(v)

1 − v2

1

k2 − M2 + i0
, M2 =

4m2
2

1 − v2
, (10)

φ(v) =
2

3
−

1

3
(1 − v2)(2 − v2),

where m2 is the mass of the fermion in the loop.

Using the standard technique of integration over Feynman parameters and the
on–mass–shell scheme for renormalization of the ultra–violet singularity [9], I
got the following result for the virtual e+e− pair contribution:

ΓVP

dc dx
= Γ0

(

α

2π

)2[

f
(e+e−)
2,virt (x) ± cPµg

(e+e−)
2,virt (x) + O

(

m2
e

m2
µ

)

]

, (11)

where

f
(e+e−)
2,virt (x) = f0(x)W (x) − 2x2 ln xL − 2x2 ln2 x − 2x2Li2 (1 − x)

−
2

3(1 − x)
ln x +

2

3
x ln x + 7x2 ln x +

2

3
ln x,

g
(e+e−)
2,virt (x) = g0(x)W (x) −

2

3
x2 ln xL −

2

3
x2 ln2 x −

2

3
x2Li2 (1 − x) (12)
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+
2

3(1 − x)
ln x −

2

3
x ln x +

13

9
x2 ln x −

2

3
ln x,

W (x) = −
1

9
L3 +

(

25

18
−

2

3
ln x

)

L2 +
(

−
397

54
−

4

3
ζ(2) +

38

9
ln x

−
4

3
ln2 x −

4

3
Li2 (1 − x)

)

L +
517

27
−

8

3
ζ(2) lnx +

22

9
ζ(2)

+
4

3
ζ(3) −

8

3
ln xLi2 (1 − x) −

265

27
ln x +

38

9
ln2 x −

8

9
ln3 x

+
38

9
Li2 (1 − x) −

8

3
S1,2 (1 − x) +

4

3
Li3 (1 − x) , (13)

Li2 (x) ≡ −

x
∫

0

dy
ln(1 − y)

y
, Li3 (x) ≡

x
∫

0

dy
Li2 (y)

y
,

S1,2 (x) ≡
1

2

x
∫

0

dy
ln2(1 − y)

y
.

It is worth to note that the sub–leading virtual corrections don’t factorize
before the Born functions f0(x) and g0(x). Such a situation happens in the
first order virtual photonic corrections too.

By integration over the energy fraction and the angle we receive the corre-
sponding contribution to the total muon width:

ΓVP =

1
∫

−1

dc

1
∫

0

dx
ΓVP

dc dx
= Γ0

(

α

2π

)2[

−
1

9
L3 +

5

3
L2 −

(

265

36
+

8

3
ζ(2)

)

L

+
20063

1296
+

61

9
ζ(2) +

16

3
ζ(3)

]

≈ −5.0497 · 10−5 Γ0. (14)

This quantity was calculated earlier in Ref. [10] by numerical integration using
dispersion relations:

ΓVP([10]) ≈ −5.1326 · 10−5 Γ0, (15)

which is close but different from my number (14). The reason for this differ-
ence will be investigated elsewhere. At least part of it can be due to terms
proportional to (α/π)2(m2

e/m
2
µ)L

n, which were omitted in my calculation.

The correction to the forward–backward asymmetry of the decay can be found
also:

ΓVP
FB =





1
∫

0

dc −

0
∫

−1

dc





1
∫

0

dx
ΓVP

dc dx
= Γ0

(

α

2π

)2[ 1

54
L3 −

13

54
L2 +

(

647

648
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+
4

9
ζ(2)

)

L −
10339

7776
−

3

2
ζ(2) −

8

9
ζ(3)

]

≈ −1.17 · 10−5 Γ0. (16)

4 Numerical Results and Conclusions

The relative effect of the soft pair correction depends only on the cut value.
It is shown in Fig. 1. The soft pair approximation (3) is not valid for values
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Fig. 1. The relative effect of soft pair corrections versus the cut value.

of ∆ close to the threshold of real pair production and for large ∆ ∼ 1. But
it can be used there as a simple estimate. So, by taking ∆ = 1 we make an
estimate of the order of magnitude of the total contribution due to real e+e−

pairs (here the estimate is about two times the true value). For very small
values of ∆ the correction should vanish in any case, so the approximation is
really safe there.

Let us define the relative contribution of the virtual e+e− pair corrections in
the form

δVP(x) =
(

α

2π

)2 f
(e+e−)
2,virt (x) + cPµg

(e+e−)
2,virt (x)

f0(x) + cPµg0(x)
. (17)

The dependence of this function on the electron energy fraction is shown in
Fig. 2 in different approximations for Pµ = 1, c = 1. The dependence on c
is very weak, because the main part of the correction is factorized before the
Born–level functions. The leading logarithmic (LL) approximation takes into
account only the terms of the order O (α2L3,2), the next–to–leading logarith-
mic (NLL) approximation includes also the O (α2L1) terms, and the next–to–
next–to–leading approximation (NNL) represents the complete result.
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Fig. 2. The relative effect of virtual pair corrections versus electron energy fraction
in different approximations.

The third power of the large logarithm cancels out in the sum of the virtual
and soft pair contributions:

ΓSVP

dc dx
= Γ0

(

α

2π

)2[

f
(e+e−)
2,SV (x) ± cPµg

(e+e−)
2,SV (x) + O

(

m2
e

m2
µ

, ∆

)

]

, (18)

where

f
(e+e−)
2,SV (x) = f0(x)U(x) − 2x2 ln xL − 2x2 ln2 x − 2x2Li2 (1 − x)

−
2

3(1 − x)
ln x +

2

3
x lnx + 7x2 ln x +

2

3
ln x,

g
(e+e−)
2,SV (x) = g0(x)U(x) −

2

3
x2 lnxL −

2

3
x2 ln2 x −

2

3
x2Li2 (1 − x)

+
2

3(1 − x)
ln x −

2

3
x ln x +

13

9
x2 ln x −

2

3
ln x,

U(x) =
(

1

2
+

2

3
ln∆ −

2

3
ln x

)

L2 +
(

4

3
ln2 ∆ −

32

9
ln ∆

−
4

3
Li2 (1 − x) −

4

3
ln2 x +

38

9
ln x −

17

6
−

8

3
ζ(2)

)

L

+
8

9
ln3 ∆ −

32

9
ln2 ∆ −

8

3
ζ(2) ln∆ +

244

27
ln ∆

+
4

3
Li3 (1 − x) −

8

3
S1,2 (1 − x) −

8

9
ln3 x −

8

3
ln xLi2 (1 − x)

+
38

9
Li2 (1 − x) +

38

9
ln2 x −

8

3
ζ(2) lnx −

265

27
ln x

+
659

81
+ 6ζ(2) + 4ζ(3). (19)

I checked that the leading and next–to–leading terms in the above formula
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agree with the corresponding contribution obtained within the fragmentation
function formalism in Refs. [6,7].

In this way we simulate the experimental set–up with a certain energy thresh-
old for registration of pairs, while events with pair production above the
threshold (with several visible charged particles in the final state) are rejected.

If the radiation of real pairs is completely forbidden by kinematics (or experi-
mental conditions), only the virtual corrections (12) contribute. That happens,
for instance at large values of x >∼ 0.99.

Thus, two contributions to the total set of radiative corrections for the muon
decay spectrum are presented. They are required to reach the level of the the-
oretical accuracy below 1 · 10−4. The formulae can be used for semi–analytical
estimates and as a part of a Monte Carlo code to describe the pair production
contribution to the decay spectrum.
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Appendix A

Asymptotic expressions for the muon form factor

Using the Schwinger substitution (10), I reproduced the known [12,13] asymp-
totic expressions for the O (α2) virtual pair contributions into the Dirac form
factor of muon:

F
(4,a)
1 (m1, m2, Q

2)

∣

∣

∣

∣

m1,m2�Q2

=
(

α

π

)2(e2

e

)2{

−
1

36
L3 +

19

72
L2

−
(

265

216
+

ζ(2)

6

)

L + D
(

m1

m2

)}

, (A.1)

D(1) =
383

108
−

1

4
ζ(2),

D(0) =
3355

1296
+

19

36
ζ(2)−

1

3
ζ(3),

D(R)

∣

∣

∣

∣

R�1
=

1

36
l3 −

13

72
l2 +

(

133

216
+

ζ(2)

3

)

l +
67

54
−

7

36
ζ(2) −

1

3
ζ(3),
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L ≡ ln
Q2

m2
2

, l ≡ ln R = ln
m2

1

m2
2

,

where m1 = mµ is the muon mass; m2 is the mass of the fermion in the loop; e
and e2 is the muon and fermion charges, respectively; −Q2 is the square of the
momentum transferred in the spacelike region: −Q2 = (p1 − p2)

2 < 0, where
p1 and p2 are the initial and the final muon four–momenta.

References

[1] N. L. Rodning et al., Nucl. Phys. Proc. Suppl. 98 (2001) 247.

[2] M. Quraan et al., Nucl. Phys. A663 (2000) 903.

[3] W. Fetscher and H. J. Gerber, Eur. Phys. J. C 15 (2000) 316.

[4] Y. Kuno and Y. Okada, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265].

[5] A. I. Davydychev, K. Schilcher and H. Spiesberger, Eur. Phys. J. C 19, 99
(2001).

[6] A. Arbuzov, hep-ph/0206036.

[7] A. Arbuzov and K. Melnikov, Phys. Rev. D 66 (2002) 093003.

[8] T. van Ritbergen and R. G. Stuart, Nucl. Phys. B 564 (2000) 343.

[9] S.M. Berman and A. Sirlin, Ann. Phys. 20 (1962) 20.

[10] T. van Ritbergen and R. G. Stuart, Phys. Rev. Lett. 82 (1999) 488.

[11] A. I. Davydychev and V. A. Smirnov, hep-ph/0210171.

[12] G. J. Burgers, Phys. Lett. B 164 (1985) 167.

[13] A. H. Hoang, J. H. Kuhn and T. Teubner, Nucl. Phys. B 452 (1995) 173.

9

http://arXiv.org/abs/hep-ph/9909265
http://arXiv.org/abs/hep-ph/0206036
http://arXiv.org/abs/hep-ph/0210171

	Introduction
	Soft e+e- Pairs
	Virtual e+e- Pair
	Numerical Results and Conclusions
	Acknowledgements
	References

