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Abstract

Thetreatmenbf systematierrorsis oftenmishandled.This is dueto lack of
understandingindeducationpasedon a fundamentahmbiguityasto whatis
meantby the term. This note addressethe problemsand offers guidanceto
goodpractice.

1 RIVAL DEFINITIONS: UNCERTAINTY AND MISTAKE
1.1 Random Uncertainties and Mistakes

Theword error is usedin severalways. The everydaydictionary definitionis a synorym for mistake.
In statisticsthis usagecontinuegasin ‘Typel error’ for the rejectionof a true hypothesisand Typell
error’ for the acceptancef a falseone)but it is alsousedin the senseof discrepancy: the statistician
writesthe equationof a straightline fit asy; = mx; + ¢ + ¢; whereg; is the‘error term’, the difference
betweerthemeasuredndtheidealvalue.

A physicistdoesnot usethis languagetheirinterestis concentrateeot on the actualdiscrepang
of a single measurementut on the overall uncertainty. They write a straightline asy; = mx; + ¢
wherethe equalssign signifiesagreemento someuncertainty(or resolution)o, andthey will call this
the‘error’. (In earlytexts this wascalledthe ‘probableerror’ but the ‘probable’got dropped.)This use
of ‘error’ to mean‘uncertainty’ ratherthan‘mistake’ or ‘discrepang’ is commonin the languagefor
example‘error bar’, ‘error analysis’,and‘quotederrorontheresult.

Suppose setof measurementsave beenmadeof the samequantity andthevaluesare

1.23,1.25,1.24,1.25,1.21,1.52,1.22,1.27

Theseexhibit someuncertainty in the 3rd decimalplace,anda mistake in thatoneof the values
clearlydoesnotbelongwith the others.

Statisticsprovides tools to identify and usethe uncertainty It can be estimatedfrom the rms
deviation of the valuesaboutthe mean,andthenusedin specifyingthe accurag of this mean,or of
a singlemeasuremenpr the numberof measurementthat would be neededo achieze somedesired
accurayg, andsoon.

Statisticgprovidestoolsto identify amistale, but notto useit. We canseethatthevalueof 1.52is
wrong- or, morecorrectly thatthe probability of this valuebeingproduceddy a measuremerdonsistent
with the othersis sosmallthatwe rejectit. Statisticadoesnotandcannottell uswhatto donext. Perhaps
the valueis a transcriptionerror for 1.25. Perhapst wastaken while the apparatusvasstill warming
up. Perhapst is dueto anunforeseerandNobel-prize-winningeffect. Perhapst is right andthe others
arewrong. Whatwe do next hasto be basedon experienceandcommonsenseput statisticsdoesnot
prescribeit.

1.2 SystematicUncertainties and Mistakes

For consisteng physicistsmust use systematic error in the sameway as random error: to denotea
systematic uncertainty andnot a systematic mistake. But considerthefollowing two definitions

‘Systematic effects is a generalcatgyory which includeseffects such as background selection
bias,scanningefficiencgy, enegy resolution,angleresolution,variationof counterefficiengy with beam
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positionandenegy, deadtime, etc. Theuncertaintyin the estimationof sucha systematieffectis called

asystematic error. - Orear[1]
‘Systematic Error: reproducibleinaccurag introducedby faulty equipmentcalibrationor tech-
nique’. - Bevington[2]

Theseare taken from widely readand acceptedauthors,and eachon its own would probably
geta nod of appraal from a practisingphysicist. However putting themtogethershaws thatthey are
incompatible Thesecondiefinitionmeansnistale - theword‘f aulty’ is akey. Thefirstexplicitly defines
anuncertainty It doesnot containthe senseof fault, blame,or incompetenceavhich is fundamentato
thesecond.

Thefollowing examplesof ‘systematicerror’ shav thesetwo usages.

1 Theenegy E measuredn a calorimetemmoduleis givenby
E =aD+ 4,

where D is somedigitisationof the recordedoutputsignal. The error (=uncertainty)on £ hasa
randompart dueto the randomuncertaintyon D (from samplingstatistics). It hasa systematic
partdueto errors(=uncertaintiespn the calibrationconstantsx and 3. Theseare systematian
thatfrom measuremertb measuremerihevalueof D will fluctuateaboutits truevaluewith some
standardieviation o p, whereaghevaluesof o andg areconstanaindtheir discrepang is applied
systematicallyto all measurements.

2 A branchingratio B is calculatedrom numberof obsered decaysN out of sometotal number
N7, wheretheefficiengy of detectionis #:

B = N/(nNr).

Thereis astatisticalPoissor(or perhapsinomial)errorontheratio N/Np whichwill fall asmore
datais gatheredThereis anuncertaintyontheefficiencgy n (probablycalculatedrom MonteCarlo
simulation)whosecontrilbution will not (unlessotherstepsaretaken)fall asmoredatais taken.

3 Measurementaretakenwith asteelrule. Therule wascalibratedatatemperaturef 15 C andthe
measurementaretakenin a warmerlaboratory andthe experimenterdoesnot allow for thermal
expansion.

4 During the processingf data,numbersareroundeddonn by omitting all digits afterthe decimal
point.

Thefirst two examplesaresystematierrorsin Orears senseThereis a systematieffect, encap-
sulatedn ¢, 3, andn, andanuncertaintyin thateffect, encapsulateth o, og, ando;,. Theseerrorscan
be handledby standardechniquesaswill bedescribedater

Thethird andfourth areexamplesof the seconddefinition,indeedExample3 is taken from Bev-
ington;they arisefrom mistales. In orderto considethow to handlethemonehasto specifythesituation
moreprecisely(aswill bedonein whatfollows.)

For consisteng we shoulduseOrears definition ratherthanBevington's. In anideal world the
term‘systematicerror’ mightbeavoided,andreplacedyy ‘systematicuncertainty’but thatis unrealistic.
It is vital to distinguishsystematic effects from the systematic errors which arethe uncertaintiesn those
effectsandfrom the systematic mistakes resultingfrom the neglect of sucheffects. Confusionbetween
thesethreeconceptds widespreadandresponsibldor poorpractice.

Of coursesystematianistalesstill exist, andstill needto beidentified. But calling themmistakes
malkesclearthatalthoughstatisticscanhelpto find them,it doesnot provide toolsto tell uswhatto do
with them.
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1.3 SystematicErr ors and Bias

Theterms'bias’ and'systematicerror’ aretreatedassynorymousby someauthorg3,4,5]. Thisis nota
full enoughdefinitionto be helpful. In discussinga biasonehasto consideliits status.

Oncea biasis known, it canbe correctedfor. an estimatorwith known bias can be trivially
replacedby anunbiassecastimator If the biasis unknavn andunsuspectethenone canby definition
do nothingaboutit. The matchbetween'bias’ and‘systematicerror’ underour definition is the case
wherea biasis known to exist, but its exactsize(systematieffect) is unknavn (systematiancertainty).

We applythis to the exampleof measurementsith anexpandingsteelrule.

¢ If the expansioncoeficientis knowvn, asarethe two temperaturesf calibrationandactualmea-
surementthenthe measurementsanbe correctedandthe biasis removed; the systematiceffect
is known exactly andthereis no systematierror.

e If theeffectis ignoredthenthisis a mistale. Hopefully consisteng checkswill be doneandwiill
(throughstatisticaltechniquesjevealadiscrepang for which the physicistwill (throughcommon
sensegxperienceandintuition) realisethe cause.

e If theeffectis known to exist but thetemperaturatwhich theactualmeasurementwsastakenwas
not recordedandonecanonly give the laboratorytemperaturdo within a few degrees thatis a
systematiaincertaintyon a systematiceffect, anda systematierrorin theacceptesgense.

2 SYSTEMATIC ERRORS CAN BE BAYESIAN

A random uncertaintyfits neatly into the frequentistdefinition of probability In consideringa large
ensembl®f measurementsljfferentresultsareobtained Onecanspealof theprobabilityof aparticular
resultasthelimit of afractionof measurementgiving thatresult.Butif ameasurememnith asystematic
uncertaintyis repeatedhen,by definition, the sameresultis obtainedevery time, giving anensemblef
identicalresultswhich cannotbe usedto sayarything aboutprobability

In somecaseghereis aclearway out. The calibrationof a calorimeterfor example maybedeter
minedthrougha separatexperiment;the ensembléo be considereds thenthe ensemblef calibration
experimentsyatherthanthe ensembleof actualmeasurementsA resistorwith value100 + 10 Q used
in voltageandcurrentmeasurementwill alwayshave the samevalue (of, perhaps;106 €2) but it came
from adrawerfull of nominal100 €2 resistorswith a spreadf values.

In somecaseghereis no escapeThis occursparticularlyfor so-calledtheory errors’. For exam-
ple, considerthe determinatiorof luminosityin e*e™ collisionsthroughmeasuringgmallangleBhabha
scatters.Perhapghe crosssectionhasbeencalculatedo third orderin thefine structureconstant. It
is inaccuratan thatit deviatesfrom the exactexpression.Yet a differentcalculationwill alwaysgives
sameresult. Onecanguessat this inaccuray: settingit to afew timesa* would be sensible But there
is no (obvious) ensembleo use. To quotea figure for anuncertaintyin sucha situationrequiresoneto
usea subjectve (Bayesian)Yefinition of probability

Evenfor a practitionerwho generallyusesand adwocatesa frequentistdefinition of probability
therearetimeswhenthe Bayesiandefinition hasto be invoked. This canbe excusedwhena particular
systematierroris (asit usuallyis) a smallpartof thetotal error In doingsoit is importantthatoneis
awareof whatoneis doing,andthe possiblepitfalls.

2.1 Prior pitfalls: anillustration

Thesedangersappearin a recentexample[6]. Consideran experimentwherelimits are obtainedon
somequantity R (perhapsa branchingratio or crosssection)from someobsered numberof eventsn.
Thiswasconsideredy CousinsandHighland[7] who wrote

n=SR
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whereS is the ‘'sensitvity’ factor containingfactorssuchasthe detectionefficiengy, andthereforehas
someassociatedincertaintyos which is probablyBayesian.Thelimits on R arecompoundedrom the
statistical(Poisson)ariationon n andthe variationin S. Considera particularvalueof R asanupper
limit: the confidencdevel canbe computedby repeatedlytaking that value, multiplying it by a value
dravn from Gauss(S, og), andusingthatasthe meanfor generatiorof a Poissorrandomnumber The
fraction of timesthatthis valueis lessthanor equalto the obsered n givesthe confidencedevel for this
valueof R. R canthenbeadjustedandthe procesgepeatedill the desiredconfidencdevel is attained.
This canbe doneusingapproximateanalyticalformulae[7] or by atoy Monte Carlo[6,7]

However it would be equallyvalid to write [8]
R=An

wherethe appropriatgactor A is merelytheinverseof S. A trivial change.And yetif oneappliesthe
sameproportionaluncertaintyto S andto A onegetsdifferentresults. For example,suppose3 events
areobsenred, andyou have an uncertaintyof 10%on S or A, which arebothtakenas1, andconsider
R = 5. The probability of 3 eventsor lessis 27.2%from the first methodbut 26.6%from the second.
Theresultsaredifferentbecausehe priors aredifferent;a Gaussiarn S is not the sameasa Gaussian
inA=1/S.

A third possibility would be to usea Jefreys’ prior. The prescriptionfor this is to effectively
transformto a variablefor which the Fisherinformationis flat, andtake aflat prior in that. To call this
‘objective’ is an overstatementhut it doesoffer a uniqueprescription. Hereit meansworking in In A
or equivalentlyln S, andgeneratinga Gaussiann that. This givesa valueintermediatebetweerthe two
others.

Themoralis that,asis well known to statisticianswith Bayesiarstatisticsonemust(unlessone
hassomea priori reasorfor a particularform) investigatethe stability of a resultunderchangesn the
prior. This exampleshaws that variationdoesoccur at the sort of level to which resultsare generally
quoted.

3 EVALUATING EFFECTS OF SYSTEMATIC UNCERTAINTY

|
I

Figurel: Evaluatingthe effect of anuncertainty

Thereis awidespreadnyth thatwhenerrorsaresystematicthe standardechniquedgor errorsdo
notapply andpractitionerdollow prescriptiongiandeddown from supervisotto student.Thisis notso.
The standardundegraduatecombinationof errorsformulastill applies,thoughonehasto be carefulto
includethe correlationterms.

In somecaseghis is all thatis required. If the enegy measuremertiasa systematicerror then
the error on, say aninvariant massmadefrom thesequantitiescan be found in the standardwvay. In
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othercaseghey cannot. Supposehe experimentalresult R dependn someparameter which is not
known exactly, but with someuncertaintyo,. This parameter could be onethat affects the Monte
Carlo generatiorof simulatedeventsusedto extract otherquantitiesin the analysis,which meansthat
the effects of this uncertaintycannotbe followed throughcombinationof errorsalgebra. Insteadone
generatesamplesat the bestvalueay, andusuallyat two othervalues,ag + o, andagy — o, to obtain
R = %, asshavn in Figure 1. The quotedresultis R(ag), andthe error dueto the uncertaintyin

a is o, R’ which is the differencein R. (In somecaseamore points may be appropriateto investigate
possiblenon-linearity or differenta valuesto avoid numericalerrors. The choiceto evaluateat +¢ is

for cornvenience.)This canbedonefor thefinal resultor for someintermediateesultwhich canthenbe
usedin acombinationof errorsformula. Indeedwith todays processingower this methodis generally
usedratherthanusingalgebraasit getsstraightto the answemwithout assumptiongbouteffectsbeing
small.

In somecaseghis procedurecanbe simplified: for exampleif theinvariantmasss usedto select
pairs of photonsin a window nearthe 7° mass,andthe numberof thesepairs usedto give a further
value,thengivenanuncertainenegy scale onecanvary thewindow ratherthantheenegy scaleby the
appropriatemount,andredoonly thefinal partof theanalysis.Note (for futurereferencejhatin sucha
casethe upperandlower edgesof thewindow arevariedtogethercoherentlyandthatthey arechanged
by aprescribecamount.

3.1 Evaluation: the error on error paradox

71 I

Figure2 Errorson errors

In atypical experimenttheremay be a large amountof Monte Carlo datageneratedt the central
valueag, but lessatag + o,. Sothe estimateof R’ may itself have anerror, og/, dueto finite Monte
Carlostatistics.How doesthis affect the systematiaincertaintyon R? Thereare3 suggestions.

1 02 = (R'a,)? + (opo.)?
Theuncertaintyin R’ is anothemuncertaintysoit shouldbe addedn quadrature.

2 02 = (R'o,)? — (op0a)?
This value R’ hasbeenmodifiedfrom true R’ in suchaway that (R'?) is increased(If R is inde-
pendenbf a, theseerrorswill force R’ avay from zero.) Subtractionin quadrature&compensates
for this.

3 0?2 =(R'o,)?
Thereis no point messingaboutwith suchsubtleties.This correctionis goingto be smallunless

botho,R' ando’, /R’ arelarge. In thatcasethento do adecengob onthemeasurementou have
to go backandgeneratenoreMonte Carlodata.
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3.11 Anillustrative example

If theestimateof R’ variessymmetricallyaboutits truevalue,andthereis noreasorto doubtthatit does,
thenthe estimateof o as R’ is unbiassedThe problemis thatthis estimates incorporatedn thetotal
error by additionin quadraturewhat mattersis not the standarddeviation but the variance.And if our
estimateof ¢ is unbiassedhenour estimateof 2 is certainlynot unbiassed.

To avoid someof the unnecessargomplicationwe consideranillustrative example. Supposen
integerz is generatedvith uniform probabilityoveralargerange.lt is theneitherincreasear decreased
by 1, with equalprobability to givey = = + 1. Youaregiventhevaluey, andyou needthe bestestimate
of 22. (Thisrepresentshe needto know the varianceratherthanthe standardieviation.)

Thereis a (Bayesianyiewpoint which argues:supposey hasa particularvalue,sayy = 5. This
could have comefrom z = 6 or x = 4, andthe probabilitiesare (by symmetry ignorance gtc) equal.
Your valueof 2 is 25, but the true valueis 16 or 36. The midway point is 26, andthatvaluewill be
unbiassedSoadd1 to thevalueof 2. Thisis thefirst of the 3 methodsabove.

Thereis a (frequentistyiewpointwhich arguesin thereversedirection. Supposer hasa particular
value,sayx = 5. Thiscouldgivey = 4 or y = 6 with equalprobability Thetrue valueof 25 becomes
16 or 36. On averagethis is 26, so subtractl to remove the bias. This is the secondof the 3 methods
above.

Algebraically thesetwo argumentdake thetwo equations
y=xz+1 r=yF1

squarghemto get
Y =r2+2c+1 2r=y F2+1
andthenarguethatonecantake theaveragewhich cancelghe + or  term.
We cantesttheseamgumentsagainstthe specialcaseof zero. Supposeyou are given a y of O.

Argumentl gives0? + 1 = 1. Whichis spoton, aswe know z = —1 or +1 soz? = 1 eitherway.
Argument2 gives0? — 1 = —1, which looks crazy How canour ‘best’ estimateof z? be a negative
number?

Continuingthetesting,suppose/ou generate: = 0. Thiswill givey? = 1 soargument2 is spot
on andargumentl is out by 2. Argumentl will never give 0. Soargument2 wins this test, but not so
dramatically asyou cannever know whetherz waszero,but if y is zerothisis obvious.

In resolvingaparadoxonehasto scrutinisethewayit is posedandheretheassertiorof a ‘uniform
probability over a large range’is opento question;the natureof this prior in z affectsthe Bayesian
argumentl but not the frequentisagument2. Thereis no scalein the original problemconcerningR’,
soa uniform probability up to a known finite limit is inadmissabl€éandwould introducecorrectionsat
thelimits). You have somebelief aboutthelimits + L, andyou believe z is uniformly generateavithin
theselimits. This combinesto give a prior which falls off atlarge |z|. Your subjectve probability of
aresultbetween2 and5 is larger thanthat for 10002and 10005. Giventhis fall, higher|z| valuesare
intrinsically lessprobablehanlow ones,soy = 5 mustbeslightly morelikely to have comefromz = 4
thanz = 6. Any giveny? valueis morelikely to be an upward fluctuationthana downward one. This
argumentappearsnescapablein thatit cannotbe deemedo be smallandthusignored. (If thefall in
probabilityis very slow, thenlarge valuesarevery probableandthe sizeof the correctionincreases.)

Thusthelogic of agumentl fails, andwe areleft with agument2. Thisisthefrequentissolution,
andthis is a valid frequentistproblem: evenif ¢, hasa Bayesiannaturethe problemcanbe statedin
termsof anensenblen whichthe Monte Carlois rerunmary times. Soit is technicallycorrect.It gives
theunbiasseastimatejn the senseghataveragedver mary suchestimateshebiaswill bezero.
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3.12 Conclusionsfor errorson errors

Thereis thusno justificationfor addingin quadratureandthereis a possibleargumentfor subtraction.
But to do this requiresthat measurementwith o > |R'| mustcontribute negatiely to the system-
atic estimateon the groundsthis compensatefor overestimationin othercases.(And the greaterthe
inaccuray, the greaterthe reductionin the error) To beright in generalyou may have to do some-
thing manifestlywrongin anindividual case(afeaturewell known in frequentistconfidencdevels near
boundaries.)

If you have alarge numberof suchcorrectiondor parameters, b, c...z thenthisapproactmaybe
arguable.But notif it's unique.Youwill never getit pastthereferee:you investigateanuncertaintyand
asaresultyou reduce the systematierror, onthe groundsthatyou might have increasedt (or, perhaps,
thatin mary paralleluniversesyouincreasedt?)

No, at this point statisticalsophisticatiorhasclearly gonetoo far for plain commonsense.We
thereforerecommendArgument3: thatthis error on error correctionshouldnot be doneasthereis no
sensiblavay of doingit. It canbeleft outof thereckoningif small,andif largethenmorework is needed
to make it small.

4 CHECKS: FINDING MISTAKES

Findingmistalesis doneby thinking throughthe analysisn acritical way, somethingoftenbestdoneby
consultingcolleaguesr presentingesultsat seminars.Sucha critique looks at what could go wrong,
andatwhatcheckscanbedoneon theanalysiswhich couldrevealmistales. Thesechecksarevariations
of theanalysisfor which the correctoutcomeis known, eitherabsolutelyor in relationto otherresults.

You cannever prove thatananalysiss perfect,but the morechecksyou performsuccessfullythe

greaterthe credibility of theresult.

Suchcheckscommonlyinclude:
. Analysingseparatelatasubsets
. Changingcuts
. Changinghistogrambin sizes
. Changingparametrisationéncludingthe orderof polynomial)
. Changindfit technique
. Looking for impossibilities

This approachs shavn, for example,in the BABAR CPviolation measurement[9]

‘... consisteng checks,including separatiorof the databy decaymode,taggingcateyory and

By, flavour.. We alsofit the samplesof non-CPdecaymodesfor sin 23 with no statisticallysignificant
asymmetryfound:

o OB~ WN PP

4.1 What is a significant difference?

If ananalysiss performedn two ways(say usingtwo differentformsto fit abackgroundunction)then
onehopesthat the differencebetweenthe two resultingvalueswill be small; a large differencewould
suggesthatthebackgroundsubtractiorwasnotbeingdoneproperly However it would be unrealisticto
expectthemto beidentical. The questiomarisesasto what‘small’ meansn this context.

It doesnot mean‘small with respectto the statisticalerror’. The statisticalerror is probably
dominatedby the samplingprocess But thesetwo analysesiredoneon the samedata(or their datasets
sharealot of elements)andsoshouldagreemuchbetterthanthat.

Supposeéhe standardanalysisgivesa; + o;. A differentmethoddoneasa checkgivesas + o9
We considetthedifferenceA = a; — as. Theerroronthisis

2 2 2
oA = 01 +05 — 2po102
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Supposdirstly that the estimateis a meanof somequantity z, and that the check consistsof
selectinga subsebf thedata

Figure3. Marny checkscanbe performedby analysinga selectecsubsebf thetotal data.

Thetwo valuesaregivenby

Nr Ns 43
andtheerrorsby
g ag
g1 = g —F
1 N, 2 Ns
andthe covariancebetweerthemis
1 1
Cov(a,as) = NSN—T FSOQ
sothecorrelationis just
p=o1/09.

This givestherequirederroron A

2 _ 2 2
OA =09 — 07

shawing thattheerroris foundby subtractiorin quadraturef thetwo separaterrors.
If the checkis moregeneral perhapsisinga differentmethodon the samedata, it is still truethat

2 2 2
oA = 01 + 05 — 2po102.

The correlationp is not known, but limits canbe placedonit [10]. Introduce(briefly) a weighted

average
a(w) = wai + (1 — w)as.

This hasvariance
Ug(w) = w?o} + (1 — w)?03 + 2w(l — w)poios

By choosingw (differentiatethe above, setit to zero,solve for w and put backin) onegetsthe
smallestvariancepossiblefrom aweightedsum.

2 2 2
2 _ o1o3(1 — p°)
™R 62 + 03 — 2p0109

g

Now, in an estimationproblemthereis a limit on the varianceof ary estimator:the Minimum
Variance(or CramerRao) Bound. This limit appliesirrespectre of the estimationtechniqueused. It
dependonly on thelikelihoodfunction, andits value oy canbe calculatedrom it. This boundmeans
that

2 2
Omin Z gg-
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Insertingthe expressiorfor 02,;, givesanexpressiorwhich canberearrangedo give limits on p,
andthattranslatego limits onoa.

Ve =)+ =od) 2 oa 2 o =) - fioF — o}

Notice thatif o1 = o this againgives subtractionin quadrature.In mary casesthe standard
analysiswill bethe mostefficient possible sothiswill bethecase.

4.2 Checksthat pass,checksthat fail
Thestandardgrocedurdor doingananalysiscanbe caricaturedasfollows

1. Devisecuts,getresult.

Do analysisfor randomerrors(likelihoodor Poissorstatistics.)
Make big table.

Alter cutsby arbitraryamountsputin table.

Repeastep4 until time/mong/supervisors patiences exhausted.
Add variationsin quadrature.

Quoteresultas'systematicerror’.

If challengeddescribdt as‘consenative’.

© N kWD

This combinesavaluationof errorswith checksfor mistales,in atotally inappropriatevay.

Suppose checkis done,anda discrepang emegesassomenumberof oa. Youthenhave to
decidewhetherit haspassedr failedthetest. Your decisionwill dependon the sizeof the discrepang
(lessthanl o surelypassesmorethan4 o surelyfails), the numberof checksbeingdone(if youdo 20
checksyou expecton averageone2o deviation) andat somelevel on the basicplausibility andreasons
that motivatedthe check(you might acceptthat datataken in the summerwere differentmorereadily
thanyou would accepthatdatataken on Tuesdaysveredifferent.)

If acheckpasseghenthe correctthing to do is nothing. Putatick in the box andmove on. Do
not, asis practicein someareasaddthe smalldiscrepang to the systematierror

1 It'saninconsistentction. You asled‘is thereaneffect’ anddecidedtherewasnt. If therewasno
effectthenyou shouldnot allow for it. Remembethatthisis a checkandnot anevaluationof an
effect.

2 It penalisegliligence.Theharderyouwork andmorethoroughyou are,thebiggeryour systematic
errorgets.A lesscarefulanalysiswill have asmallerquotederrorandgetthecitations.

3 Errorsgetinflated. Remembehow the LEP experimentsappearo agreewith eachotherandthe
Standardviodel far too well.

Onehasto be careful. Contrastmoving masscutsby a definedamountto compensatéor enegy
uncertainty(this is anevaluationandincluded)andchangingmasscutsby anarbitraryamountto check
efficiengy/purity (thisis acheckandnotincludedif successful.)

If it fails thenthe correctactionsto take are

1 Checkthetest. The mistale maywell lie there.Find andfix it.
2 If thatdoesnt work, checktheanalysis.Find andfix mistale.

3 Worry. Maybewith hindsightan effect is reasonable(Why arethe resultsof my ruler measure-
mentsdifferent after lunch? Hey, the temperature warmerin the afternoons- | forgot about
thermalexpansion!)This checknow becomesnevaluation.

4 Worry. Thisdiscrepang is only thetip of theicebeg. Ask colleagueslook at whatotherexperi-
mentsdid.
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99 As alastresort,incorporateghediscrepang in systematierror

Justdoingawholelot of checksandaddingup the resultsin quadratureo the systematicerroris
makingawholelot of mistales,sometoo lenient,sometoo harsh.

4.3 lllustration: an inappropriate function

1.2 + 12 F 12 12 L
C + L
1 - 1 - 1 - 10 -
E + E
0.8 - + 0.8 0.8 8 -
0.6 - + 0.6 - 0.6 6
r + r F
0.4 + 0.4 — 0.4 4
C + L C
0.2;+ 0.2:* 0.2j 2 -
) s e AN R IR ol o AL i 0 Ll vu il
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 " 2 3 4 5

Figure4 An inappropriatgunction. Theplotsshaw (i) Thedata.(ii) A straightline fit to the data. (iii)
Additionalfits to subranges(iv) Extrapolationof fits andthetruefunction- notechangesn scale.

Suppose&/ou areusinga calorimeterfor whichtheenegy y correspondingo asignalz is actually
givenby y = z + 0.3z2. Measurementaretaken asshavn in the first plot (measuremengrrorsare
suppressetbr clarity). Youfit it asa straightline y = max + ¢ usingdatain therange0 < z < 1, and
getm = 1.3 andc = —0.05, asshavn in thesecondplot. Thisis whatyou usein your analysis.

As a sensiblecheckyou decideto calibratethe subrange$ < z < 0.5 and0.5 < z < 1
separatelyTheresultsaredifferent(asshavn in thethird plot). Theslopesarel.15and1.45,andthere
is no possibilitythatthis is a statisticalerror.

You follow the procedureabove but for somereasorfail to spotthata linear calibrationis inade-
guate.Youendupincorporatinghedifferenceof 0.15asasystematierroronm (with perhapsasimilar
systematierrorfor ¢, andevena correlationbetweerthem.)

Notice whata terrible decisionthis is. As you canseefrom thefigures,in therange0 < z < 1
this is far too harsh. Theline with a slopeof 1.3 actuallyfollows the points pretty well andthis extra
erroris inflationary

Ontheotherhand,if this calibrationis to be extrapolatedowardsz = 2 or evenz = 5, theneven
this extra variationfar underestimatethe calibrationdiscrepang in thisregion. The proceduras fartoo
lenient.

Thisillustratesthe pointthatthereis no ‘correct’ procedurdor incorporationof acheckthatfails.
If youfold it into the systematierrorsthisis almostcertainlywrong,andshouldonly be donewhenall
otherpossibiliteshave beenexhausted.

5 CONCLUSIONS: ADVICE FOR PRACTITIONERS
Thefollowing shouldbeprintedin largelettersandhungonthewall of every practisingparticlephysicist.

¢ Thoushaltnever say‘systematicerror’ whenthoumeanestsystematiceffect’ or ‘systematiomis-
take’.

e Thoushaltnotadduncertaintie®n uncertaintiesn quadraturelf they arelargerthanchickenfeed
thoushaltgeneratenoreMonte Carlountil they shrinkto becomeso.

e Thoushaltknow atall timeswhethemwhatthouperformests acheckfor amistale or anevaluation
of anuncertainty

e Thoushaltnotincorporatesuccessfutheckresultsinto thy total systematierrorandmale thereby
ashieldbehindwhichto hidethy dodgyresult.

e Thoushaltnotincorporatefailed checkresultsunlessthouart truly atthy wits’ end.
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e Thoushaltsaywhatthoudoest.andthoushaltbe ableto justify it out of thine own mouth;notthe
mouthof thy supervisgrnor thy colleaguewho did the analysislasttime, nor thy local statistics
guru,northy matedown the puh

Do these andthoushaltflourish,andthineanalysidik ewise.
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