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Abstract
Thetreatmentof systematicerrorsis oftenmishandled.This is dueto lack of
understandingandeducation,basedon a fundamentalambiguityasto whatis
meantby the term. This noteaddressesthe problemsandoffers guidanceto
goodpractice.

1 RIVAL DEFINITIONS: UNCERTAINTY AND MISTAKE

1.1 RandomUncertaintiesand Mistakes

The word error is usedin several ways. The everydaydictionarydefinition is a synonym for mistake.
In statisticsthis usagecontinues(asin ‘TypeI error’ for the rejectionof a truehypothesisand‘TypeII
error’ for the acceptanceof a falseone)but it is alsousedin the senseof discrepancy: the statistician
writestheequationof a straightline fit as ���������	��

��

��� where ��� is the‘error term’, thedifference
betweenthemeasuredandtheidealvalue.

A physicistdoesnotusethis language;their interestis concentratednoton theactualdiscrepancy
of a singlemeasurement,but on the overall uncertainty. They write a straightline as � � ����� � 
��
wheretheequalssignsignifiesagreementto someuncertainty(or resolution)� , andthey will call this
the‘error’. (In early texts this wascalledthe‘probableerror’ but the‘probable’got dropped.)This use
of ‘error’ to mean‘uncertainty’ ratherthan‘mistake’ or ‘discrepancy’ is commonin the language,for
example‘error bar’, ‘error analysis’,and‘quotederroron theresult.’

Supposeasetof measurementshave beenmadeof thesamequantity, andthevaluesare

��������������������������������� ���!�����"�!�������"���������"���!�����"�$#
Theseexhibit someuncertainty in the3rd decimalplace,anda mistake in thatoneof thevalues

clearlydoesnotbelongwith theothers.

Statisticsprovides tools to identify and usethe uncertainty. It can be estimatedfrom the rms
deviation of the valuesaboutthe mean,and thenusedin specifyingthe accuracy of this mean,or of
a singlemeasurement,or the numberof measurementsthat would be neededto achieve somedesired
accuracy, andsoon.

Statisticsprovidestoolsto identify amistake,but not to useit. Wecanseethatthevalueof 1.52is
wrong- or, morecorrectly, thattheprobabilityof thisvaluebeingproducedby ameasurementconsistent
with theothersis sosmallthatwerejectit. Statisticsdoesnotandcannottell uswhatto donext. Perhaps
the valueis a transcriptionerror for 1.25. Perhapsit wastaken while the apparatuswasstill warming
up. Perhapsit is dueto anunforeseenandNobel-prize-winningeffect. Perhapsit is right andtheothers
arewrong. What we do next hasto bebasedon experienceandcommonsense,but statisticsdoesnot
prescribeit.

1.2 SystematicUncertaintiesand Mistakes

For consistency physicistsmust usesystematic error in the sameway as random error: to denotea
systematic uncertainty andnota systematic mistake. But considerthefollowing two definitions

‘Systematic effects is a generalcategory which includeseffects suchas background,selection
bias,scanningefficiency, energy resolution,angleresolution,variationof counterefficiency with beam
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positionandenergy, deadtime,etc.Theuncertaintyin theestimationof suchasystematiceffect is called
a systematic error.’ - Orear[1]

‘Systematic Error: reproducibleinaccuracy introducedby faulty equipment,calibrationor tech-
nique.’ - Bevington[2]

Theseare taken from widely readand acceptedauthors,and eachon its own would probably
get a nod of approval from a practisingphysicist. However putting themtogethershows that they are
incompatible.Theseconddefinitionmeansmistake- theword‘f aulty’ isakey. Thefirstexplicitly defines
anuncertainty. It doesnot containthesenseof fault, blame,or incompetencewhich is fundamentalto
thesecond.

Thefollowing examplesof ‘systematicerror’ show thesetwo usages.

1 Theenergy % measuredin a calorimetermoduleis givenby

% ��&�'(
*) �
where ' is somedigitisationof the recordedoutputsignal. Theerror (=uncertainty)on % hasa
randompart dueto the randomuncertaintyon ' (from samplingstatistics). It hasa systematic
part dueto errors(=uncertainties)on the calibrationconstants& and ) . Thesearesystematicin
thatfrom measurementto measurementthevalueof ' will fluctuateaboutits truevaluewith some
standarddeviation �	+ , whereasthevaluesof & and ) areconstantandtheirdiscrepancy is applied
systematicallyto all measurements.

2 A branchingratio , is calculatedfrom numberof observed decays- out of sometotal number-/. , wheretheefficiency of detectionis 0 :

, � -21!340�- .65 �
Thereis astatisticalPoisson(or perhapsbinomial)errorontheratio -217- . whichwill fall asmore
datais gathered.Thereis anuncertaintyontheefficiency 0 (probablycalculatedfrom MonteCarlo
simulation)whosecontribution will not (unlessotherstepsaretaken)fall asmoredatais taken.

3 Measurementsaretakenwith asteelrule. Therulewascalibratedata temperatureof
���

C andthe
measurementsaretaken in a warmerlaboratory, andtheexperimenterdoesnot allow for thermal
expansion.

4 During theprocessingof data,numbersareroundeddown by omitting all digits after thedecimal
point.

Thefirst two examplesaresystematicerrorsin Orear’s sense.Thereis a systematiceffect,encap-
sulatedin & , ) , and 0 , andanuncertaintyin thateffect,encapsulatedin �98 , ��: , and �9; . Theseerrorscan
behandledby standardtechniques,aswill bedescribedlater.

Thethird andfourth areexamplesof theseconddefinition,indeedExample3 is takenfrom Bev-
ington;they arisefrom mistakes.In orderto considerhow to handlethemonehasto specifythesituation
moreprecisely(aswill bedonein whatfollows.)

For consistency we shoulduseOrear’s definition ratherthanBevington’s. In an ideal world the
term‘systematicerror’ mightbeavoided,andreplacedby ‘systematicuncertainty’but thatis unrealistic.
It is vital to distinguishsystematic effects from thesystematic errors whicharetheuncertaintiesin those
effectsandfrom the systematic mistakes resultingfrom theneglectof sucheffects. Confusionbetween
thesethreeconceptsis widespread,andresponsiblefor poorpractice.

Of coursesystematicmistakesstill exist, andstill needto beidentified.But calling themmistakes
makesclearthatalthoughstatisticscanhelpto find them,it doesnot provide tools to tell uswhat to do
with them.
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1.3 SystematicErr ors and Bias

Theterms‘bias’ and‘systematicerror’ aretreatedassynonymousby someauthors[3,4,5]. This is nota
full enoughdefinitionto behelpful. In discussingabiasonehasto considerits status.

Oncea bias is known, it can be correctedfor: an estimatorwith known bias can be trivially
replacedby anunbiassedestimator. If thebiasis unknown andunsuspectedthenonecanby definition
do nothingaboutit. The matchbetween‘bias’ and ‘systematicerror’ underour definition is the case
whereabiasis known to exist, but its exactsize(systematiceffect) is unknown (systematicuncertainty).

Weapplythis to theexampleof measurementswith anexpandingsteelrule.< If theexpansioncoefficient is known, asarethe two temperaturesof calibrationandactualmea-
surement,thenthemeasurementscanbecorrectedandthebiasis removed; thesystematiceffect
is known exactlyandthereis no systematicerror.< If theeffect is ignoredthenthis is a mistake. Hopefully consistency checkswill bedoneandwill
(throughstatisticaltechniques)revealadiscrepancy for which thephysicistwill (throughcommon
sense,experienceandintuition) realisethecause.< If theeffect is known to exist but thetemperatureatwhich theactualmeasurementswastakenwas
not recorded,andonecanonly give the laboratorytemperatureto within a few degrees,that is a
systematicuncertaintyonasystematiceffect,andasystematicerrorin theacceptedsense.

2 SYSTEMATIC ERRORSCAN BE BAYESIAN

A random uncertaintyfits neatly into the frequentistdefinition of probability. In consideringa large
ensembleof measurements,differentresultsareobtained.Onecanspeakof theprobabilityof aparticular
resultasthelimit of afractionof measurementsgiving thatresult.But if ameasurementwith asystematic
uncertaintyis repeatedthen,by definition,thesameresultis obtainedevery time,giving anensembleof
identicalresultswhichcannotbeusedto sayanything aboutprobability.

In somecasesthereis aclearwayout. Thecalibrationof acalorimeter, for example,maybedeter-
minedthrougha separateexperiment;theensembleto beconsideredis thentheensembleof calibration
experiments,ratherthantheensembleof actualmeasurements.A resistorwith value

�>=�=/?@�>=BA
used

in voltageandcurrentmeasurementswill alwayshave thesamevalue(of, perhaps,
�>=$CBA

) but it came
from a drawer full of nominal

�>=�=DA
resistorswith aspreadof values.

In somecasesthereis noescape.This occursparticularlyfor so-called‘theoryerrors’.For exam-
ple,considerthedeterminationof luminosityin EGFHE�I collisionsthroughmeasuringsmallangleBhabha
scatters.Perhapsthecrosssectionhasbeencalculatedto third orderin thefine structureconstant& . It
is inaccuratein that it deviatesfrom theexactexpression.Yet a differentcalculationwill alwaysgives
sameresult.Onecanguessat this inaccuracy: settingit to a few times &KJ would besensible.But there
is no (obvious)ensembleto use.To quotea figure for anuncertaintyin sucha situationrequiresoneto
useasubjective (Bayesian)definitionof probability.

Even for a practitionerwho generallyusesandadvocatesa frequentistdefinition of probability,
therearetimeswhentheBayesiandefinitionhasto be invoked. This canbeexcusedwhena particular
systematicerror is (asit usuallyis) a smallpartof the total error. In doingsoit is importantthatoneis
awareof whatoneis doing,andthepossiblepitfalls.

2.1 Prior pitfalls: an illustration

Thesedangersappearin a recentexample[6]. Consideran experimentwherelimits areobtainedon
somequantity L (perhapsa branchingratio or crosssection)from someobserved numberof events M .
Thiswasconsideredby CousinsandHighland[7] who wrote

M �ON L
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where N is the ‘sensitivity’ factor, containingfactorssuchasthedetectionefficiency, andthereforehas
someassociateduncertainty�QP which is probablyBayesian.Thelimits on L arecompoundedfrom the
statistical(Poisson)variationon M andthevariationin N . Considera particularvalueof L asanupper
limit: the confidencelevel canbe computedby repeatedlytaking that value,multiplying it by a value
drawn from RTSVUQW�WV3 N � �QP 5 , andusingthatasthemeanfor generationof a Poissonrandomnumber. The
fractionof timesthatthis valueis lessthanor equalto theobserved M givestheconfidencelevel for this
valueof L . L canthenbeadjustedandtheprocessrepeatedtill thedesiredconfidencelevel is attained.
Thiscanbedoneusingapproximateanalyticalformulae[7] or by a toy MonteCarlo[6,7]

However it would beequallyvalid to write [8]

L �YX M
wheretheappropriatefactor X is merelythe inverseof N . A trivial change.And yet if oneappliesthe
sameproportionaluncertaintyto N andto X onegetsdifferentresults.For example,suppose3 events
areobserved, andyou have an uncertaintyof 10%on N or X , which areboth taken as1, andconsiderL � �

. Theprobabilityof 3 eventsor lessis 27.2%from thefirst methodbut 26.6%from thesecond.
Theresultsaredifferentbecausethepriorsaredifferent;a Gaussianin N is not thesameasa Gaussian
in X�Z � 1 N .

A third possibility would be to usea Jeffreys’ prior. The prescriptionfor this is to effectively
transformto a variablefor which theFisherinformationis flat, andtake a flat prior in that. To call this
‘objective’ is an overstatement,but it doesoffer a uniqueprescription.Hereit meansworking in []\ X
or equivalently [^\ N , andgeneratinga Gaussianin that.Thisgivesavalueintermediatebetweenthetwo
others.

Themoral is that,asis well known to statisticians,with Bayesianstatisticsonemust(unlessone
hassomea priori reasonfor a particularform) investigatethestability of a resultunderchangesin the
prior. This exampleshows that variationdoesoccurat the sort of level to which resultsaregenerally
quoted.

3 EVALUATING EFFECTS OF SYSTEMATIC UNCERTAINTY

R

a
+- aa σσ

Figure1: Evaluatingtheeffectof anuncertainty

Thereis a widespreadmyth thatwhenerrorsaresystematic,thestandardtechniquesfor errorsdo
notapply, andpractitionersfollow prescriptionshandeddown from supervisorto student.This is notso.
Thestandardundergraduatecombinationof errorsformulastill applies,thoughonehasto becarefulto
includethecorrelationterms.

In somecasesthis is all that is required. If the energy measurementhasa systematicerror then
the error on, say, an invariantmassmadefrom thesequantitiescanbe found in the standardway. In
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othercasesthey cannot.Supposetheexperimentalresult L dependson someparameterS which is not
known exactly, but with someuncertainty�	_ . This parameterS could be onethat affects the Monte
Carlo generationof simulatedeventsusedto extract otherquantitiesin theanalysis,which meansthat
the effectsof this uncertaintycannotbe followed throughcombinationof errorsalgebra. Insteadone
generatessamplesat thebestvalue SV` , andusuallyat two othervalues,S�` 
 �	_ and S�`ba*�9_ to obtainLTc �edgfd _ , asshown in Figure1. The quotedresult is Lh3iS�` 5 , and the error due to the uncertaintyinS is �	_jL c which is the differencein L . (In somecasesmorepointsmay be appropriateto investigate
possiblenon-linearity, or different S valuesto avoid numericalerrors. The choiceto evaluateat

? � is
for convenience.)This canbedonefor thefinal resultor for someintermediateresultwhichcanthenbe
usedin a combinationof errorsformula. Indeedwith today’s processingpower this methodis generally
usedratherthanusingalgebra,asit getsstraightto theanswerwithout assumptionsabouteffectsbeing
small.

In somecasesthis procedurecanbesimplified: for exampleif theinvariantmassis usedto select
pairsof photonsin a window nearthe k ` mass,andthe numberof thesepairsusedto give a further
value,thengivenanuncertainenergy scale,onecanvary thewindow ratherthantheenergy scaleby the
appropriateamount,andredoonly thefinal partof theanalysis.Note(for futurereference)thatin sucha
casetheupperandloweredgesof thewindow arevariedtogether, coherently, andthatthey arechanged
by aprescribedamount.

3.1 Evaluation: the error on error paradox

Figure2 Errorson errors

In a typical experimenttheremaybea largeamountof MonteCarlodatageneratedat thecentral
value SV` , but lessat SV` ? �	_ . So theestimateof LTc may itself have an error, � f9l , dueto finite Monte
Carlostatistics.How doesthisaffect thesystematicuncertaintyon L ? Thereare3 suggestions.

1 �nm � 3iLTco�	_ 5 m 
 3i� f l �9_ 5 m
Theuncertaintyin L c is anotheruncertaintysoit shouldbeaddedin quadrature.

2 � m � 3iL c � _ 5 m ap3i� f l � _ 5 m
This value LTc hasbeenmodifiedfrom true LTc in sucha way that qiLTc mjr is increased.(If R is inde-
pendentof S , theseerrorswill force L c away from zero.) Subtractionin quadraturecompensates
for this.

3 �nm � 3iLTco�	_ 5 m
Thereis no point messingaboutwith suchsubtleties.This correctionis going to besmallunless
both � _ L c and � cf 1�L c arelarge. In thatcasethento do adecentjob on themeasurementyouhave
to gobackandgeneratemoreMonteCarlodata.
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3.11 An illustrative example

If theestimateof L c variessymmetricallyaboutits truevalue,andthereis noreasonto doubtthatit does,
thentheestimateof � as LTc �	_ is unbiassed.Theproblemis thatthisestimateis incorporatedin thetotal
errorby additionin quadrature;whatmattersis not thestandarddeviation but thevariance.And if our
estimateof � is unbiassedthenourestimateof � m is certainlynotunbiassed.

To avoid someof theunnecessarycomplicationwe consideran illustrative example.Supposean
integer � is generatedwith uniformprobabilityoveralargerange.It is theneitherincreasedor decreased
by 1, with equalprobability, to give �s�Y� ?t�

. Youaregiventhevalue � , andyouneedthebestestimate
of � m . (This representstheneedto know thevarianceratherthanthestandarddeviation.)

Thereis a (Bayesian)viewpoint which argues:suppose� hasa particularvalue,say ��� �
. This

could have comefrom �*� C
or �*� �

, andtheprobabilitiesare(by symmetry, ignorance,etc)equal.
Your valueof � m is 25, but the true valueis 16 or 36. The midway point is 26, andthat valuewill be
unbiassed.Soadd1 to thevalueof � m . This is thefirst of the3 methodsabove.

Thereis a(frequentist)viewpointwhicharguesin thereversedirection.Suppose� hasaparticular
value,say �u� �

. This couldgive �v� �
or �w� C

with equalprobability. Thetruevalueof 25 becomes
16 or 36. On averagethis is 26, sosubtract1 to remove thebias. This is thesecondof the3 methods
above.

Algebraically, thesetwo argumentstake thetwo equations

�h�x� ?�� ���x�zy �
squarethemto get � m �x� m ?{� �h
 � � m �x� m y � �z
 �
andthenarguethatonecantake theaverage,whichcancelsthe

?
or y term.

We cantest theseargumentsagainstthe specialcaseof zero. Supposeyou aregiven a � of 0.
Argument1 gives

= m 
 � � �
. Which is spoton, aswe know �|� a �

or 
 �
so � m � �

eitherway.
Argument2 gives

= mza � � a �
, which looks crazy. How canour ‘best’ estimateof � m be a negative

number?

Continuingthetesting,supposeyou generate�u� =
. This will give � m � �

soargument2 is spot
on andargument1 is out by 2. Argument1 will never give 0. Soargument2 wins this test,but not so
dramatically, asyou cannever know whether� waszero,but if � is zerothis is obvious.

In resolvingaparadoxonehasto scrutinisethewayit is posed,andheretheassertionof a‘uniform
probability over a large range’ is opento question;the natureof this prior in � affects the Bayesian
argument1 but not thefrequentistargument2. Thereis no scalein theoriginal problemconcerningLTc ,
soa uniform probabilityup to a known finite limit is inadmissable(andwould introducecorrectionsat
thelimits). You have somebelief aboutthelimits

?z}
, andyou believe � is uniformly generatedwithin

theselimits. This combinesto give a prior which falls off at large ~ � ~ . Your subjective probability of
a resultbetween2 and5 is larger thanthat for 10002and10005. Given this fall, higher ~ � ~ valuesare
intrinsically lessprobablethanlow ones,so �h� �

mustbeslightly morelikely to havecomefrom ��� �
than ��� C

. Any given � m valueis morelikely to beanupwardfluctuationthana downwardone. This
argumentappearsinescapable,in that it cannotbe deemedto besmall andthusignored. (If the fall in
probabilityis very slow, thenlargevaluesareveryprobableandthesizeof thecorrectionincreases.)

Thusthelogic of argument1 fails,andweareleft with argument2. This is thefrequentistsolution,
andthis is a valid frequentistproblem: even if �	_ hasa Bayesiannaturethe problemcanbe statedin
termsof anensenblein which theMonteCarlois rerunmany times.Soit is technicallycorrect.It gives
theunbiassedestimate,in thesensethataveragedover many suchestimatesthebiaswill bezero.
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3.12 Conclusions for errors on errors

Thereis thusno justificationfor addingin quadrature,andthereis a possibleargumentfor subtraction.
But to do this requiresthat measurementswith � f9l�� ~ LTc�~ mustcontribute negatively to the system-
atic estimate,on the groundsthis compensatesfor overestimationin othercases.(And the greaterthe
inaccuracy, the greaterthe reductionin the error.) To be right in generalyou may have to do some-
thing manifestlywrongin anindividual case(a featurewell known in frequentistconfidencelevelsnear
boundaries.)

If youhavealargenumberof suchcorrectionsfor parametersS ���G� � �������
thenthisapproachmaybe

arguable.But not if it’s unique.Youwill never getit pastthereferee:you investigateanuncertaintyand
asa resultyou reduce thesystematicerror, on thegroundsthatyoumight have increasedit (or, perhaps,
thatin many paralleluniversesyou increasedit?)

No, at this point statisticalsophisticationhasclearly gonetoo far for plain commonsense.We
thereforerecommendArgument3: that this erroron errorcorrectionshouldnot bedoneasthereis no
sensiblewayof doingit. It canbeleft outof thereckoningif small,andif largethenmorework is needed
to make it small.

4 CHECKS: FINDING MISTAKES

Findingmistakesis doneby thinkingthroughtheanalysisin acritical way, somethingoftenbestdoneby
consultingcolleaguesor presentingresultsat seminars.Sucha critique looks at whatcouldgo wrong,
andatwhatcheckscanbedoneontheanalysiswhichcouldrevealmistakes.Thesechecksarevariations
of theanalysis,for which thecorrectoutcomeis known, eitherabsolutelyor in relationto otherresults.

Youcannever prove thatananalysisis perfect,but themorechecksyouperformsuccessfully, the
greaterthecredibility of theresult.

Suchcheckscommonlyinclude:
1. Analysingseparatedatasubsets

2. Changingcuts

3. Changinghistogrambin sizes

4. Changingparametrisations(includingtheorderof polynomial)

5. Changingfit technique

6. Looking for impossibilities
This approachis shown, for example,in the �B���B�6� CPviolationmeasurement[9]

‘... consistency checks,including separationof the databy decaymode,taggingcategory and,��]_�� flavour... Wealsofit thesamplesof non-CPdecaymodesfor ���^\ � ) with nostatisticallysignificant
asymmetryfound.’

4.1 What is a significant difference?

If ananalysisis performedin two ways(say, usingtwo differentformsto fit abackgroundfunction)then
onehopesthat the differencebetweenthe two resultingvalueswill be small; a large differencewould
suggestthatthebackgroundsubtractionwasnotbeingdoneproperly. However it wouldbeunrealisticto
expectthemto beidentical.Thequestionarisesasto what‘small’ meansin thiscontext.

It doesnot mean‘small with respectto the statisticalerror’. The statisticalerror is probably
dominatedby thesamplingprocess.But thesetwo analysesaredoneon thesamedata(or their datasets
sharea lot of elements),andsoshouldagreemuchbetterthanthat.

Supposethestandardanalysisgives S9� ? �n� . A differentmethoddoneasa checkgives S m ? � m
Weconsiderthedifference� � S � a�S m . Theerroron this is

� m� � � m� 
 � mm a ��� �n��� m
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Supposefirstly that the estimateis a meanof somequantity � , and that the checkconsistsof
selectingasubsetof thedata

T
S

Figure3. Many checkscanbeperformedby analysingaselectedsubsetof thetotaldata.

Thetwo valuesaregivenby

S�� � �
- .

�
.

�	� S m � �
-�P

�
P

�9�

andtheerrorsby

� � � �� - . � m � �� -�P
andthecovariancebetweenthemis

�D��� 3iS9� � S m 5 � -�P
�

- .
�

-�P � m
sothecorrelationis just � � ���71�� m �
Thisgivestherequirederroron � � m� � � mm at� m�
showing thattheerroris foundby subtractionin quadratureof thetwo separateerrors.

If thecheckis moregeneral,perhapsusingadifferentmethodon thesamedata,it is still truethat

� m� � � m � 
 � mm a ��� �n��� m �
Thecorrelation

�
is not known, but limits canbeplacedon it [10]. Introduce(briefly) a weighted

average SQ34� 5 � ��S�� 
 3 � a�� 5 S m �
This hasvariance

� m_��"�n  � � m � m� 
 3 � a�� 5 m � mm 
 � ��3 � a�� 5 � ���g� m
By choosing� (differentiatethe above, setit to zero,solve for � andput backin) onegetsthe

smallestvariancepossiblefrom aweightedsum.

� m¡ �o¢ � � m� � mm 3 � a � m 5
�nm� 
 �nmm a ��� ���£� m

�

Now, in an estimationproblemthereis a limit on the varianceof any estimator: the Minimum
Variance(or Cramer-Rao)Bound. This limit appliesirrespective of the estimationtechniqueused. It
dependsonly on the likelihoodfunction,andits value �9` canbecalculatedfrom it. This boundmeans
that � m¡ �o¢v¤ � m` �
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Insertingtheexpressionfor �nm¡ �o¢ givesanexpressionwhichcanberearrangedto give limits on
�
,

andthattranslatesto limits on � � .

¥ ¦ � m� a�� m`�§ 
 ¥ ¦ � mm a�� m`G§ ¤ � � ¤©¨¨¨¨
¥ ¦ � m� a�� m`�§ a ¥ ¦ � mm a�� m`G§ ¨¨¨¨

�

Notice that if �n� � �	` this againgives subtractionin quadrature.In many casesthe standard
analysiswill bethemostefficientpossible,sothiswill bethecase.

4.2 Checksthat pass,checksthat fail

Thestandardprocedurefor doingananalysiscanbecaricaturedasfollows

1. Devisecuts,getresult.

2. Do analysisfor randomerrors(likelihoodor Poissonstatistics.)

3. Make big table.

4. Alter cutsby arbitraryamounts,put in table.

5. Repeatstep4 until time/money/supervisor’s patienceis exhausted.

6. Add variationsin quadrature.

7. Quoteresultas‘systematicerror’.

8. If challenged,describeit as‘conservative’.

This combinesevaluationof errorswith checksfor mistakes,in a totally inappropriateway.

Supposea checkis done,anda discrepancy emergesassomenumberof � � . You thenhave to
decidewhetherit haspassedor failedthetest.Your decisionwill dependon thesizeof thediscrepancy
(lessthan1 � surelypasses,morethan4 � surelyfails), thenumberof checksbeingdone(if you do 20
checksyou expecton averageone

� � deviation) andat somelevel on thebasicplausibility andreasons
that motivatedthe check(you might acceptthat datataken in the summerweredifferentmorereadily
thanyouwouldacceptthatdatatakenon Tuesdaysweredifferent.)

If a checkpassesthenthecorrectthing to do is nothing. Puta tick in thebox andmove on. Do
not,asis practicein someareas,addthesmalldiscrepancy to thesystematicerror.

1 It’s aninconsistentaction.Youasked‘is thereaneffect’ anddecidedtherewasn’t. If therewasno
effect thenyou shouldnot allow for it. Rememberthatthis is a checkandnot anevaluationof an
effect.

2 It penalisesdiligence.Theharderyouwork andmorethoroughyouare,thebiggeryoursystematic
errorgets.A lesscarefulanalysiswill have asmallerquotederrorandgetthecitations.

3 Errorsget inflated.Rememberhow theLEP experimentsappearto agreewith eachotherandthe
StandardModel far too well.

Onehasto becareful.Contrastmoving masscutsby a definedamountto compensatefor energy
uncertainty(this is anevaluationandincluded)andchangingmasscutsby anarbitraryamountto check
efficiency/purity (this is acheckandnot includedif successful.)

If it fails thenthecorrectactionsto take are

1 Checkthetest.Themistake maywell lie there.Findandfix it.

2 If thatdoesn’t work, checktheanalysis.Find andfix mistake.

3 Worry. Maybewith hindsightaneffect is reasonable.(Why arethe resultsof my ruler measure-
mentsdifferent after lunch? Hey, the temperature’s warmerin the afternoons- I forgot about
thermalexpansion!)Thischecknow becomesanevaluation.

4 Worry. This discrepancy is only thetip of theiceberg. Ask colleagues,look at whatotherexperi-
mentsdid.
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99 As a lastresort,incorporatethediscrepancy in systematicerror.

Justdoinga wholelot of checksandaddingup theresultsin quadratureto thesystematicerror is
makinga wholelot of mistakes,sometoo lenient,sometooharsh.

4.3 Illustration: an inappropriate function

Figure4 An inappropriatefunction.Theplotsshow (i) Thedata.(ii) A straightline fit to thedata.(iii)
Additionalfits to subranges.(iv) Extrapolationof fits andthetruefunction- notechangesin scale.

Supposeyouareusingacalorimeterfor whichtheenergy � correspondingto asignal � is actually
given by �*�ª�«
 =!��� � m . Measurementsaretaken asshown in the first plot (measurementerrorsare
suppressedfor clarity). You fit it asa straightline �¬�(���h

� usingdatain therange

=�­ � ­©�
, and

get �®� �����
and �¯� a =!��=$�

, asshown in thesecondplot. This is whatyouusein youranalysis.

As a sensiblecheckyou decideto calibratethe subranges
=©­ � ­°=!���

and
=!���±­ � ­e�

separately. Theresultsaredifferent(asshown in thethird plot). Theslopesare1.15and1.45,andthere
is no possibilitythatthis is astatisticalerror.

You follow theprocedureabove but for somereasonfail to spotthata linearcalibrationis inade-
quate.Youendupincorporatingthedifferenceof 0.15asasystematicerroron � (with perhapsasimilar
systematicerrorfor � , andevenacorrelationbetweenthem.)

Noticewhata terribledecisionthis is. As you canseefrom thefigures,in therange
=²­ � ­³�

this is far too harsh.The line with a slopeof
�����

actuallyfollows the pointspretty well andthis extra
erroris inflationary.

On theotherhand,if this calibrationis to beextrapolatedtowards�¬� �
or even �¬� �

, theneven
thisextravariationfarunderestimatesthecalibrationdiscrepancy in this region. Theprocedureis far too
lenient.

This illustratesthepoint thatthereis no ‘correct’ procedurefor incorporationof acheckthatfails.
If you fold it into thesystematicerrorsthis is almostcertainlywrong,andshouldonly bedonewhenall
otherpossibiliteshave beenexhausted.

5 CONCLUSIONS: ADVICE FOR PRACTITIONERS

Thefollowing shouldbeprintedin largelettersandhungonthewall of everypractisingparticlephysicist.
< Thoushaltneversay‘systematicerror’ whenthoumeanest‘systematiceffect’ or ‘systematicmis-

take’.< Thoushaltnotadduncertaintiesonuncertaintiesin quadrature.If they arelargerthanchickenfeed
thoushaltgeneratemoreMonteCarlountil they shrinkto becomeso.< Thoushaltknow atall timeswhetherwhatthouperformestis acheckfor amistakeor anevaluation
of anuncertainty.< Thoushaltnotincorporatesuccessfulcheckresultsinto thy totalsystematicerrorandmakethereby
ashieldbehindwhich to hidethy dodgyresult.< Thoushaltnot incorporatefailedcheckresultsunlessthouart truly at thy wits’ end.
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< Thoushaltsaywhatthoudoest,andthoushaltbeableto justify it outof thineown mouth;not the
mouthof thy supervisor, nor thy colleaguewho did theanalysislast time, nor thy local statistics
guru,nor thy matedown thepub.

Do these,andthoushaltflourish,andthineanalysislikewise.
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