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Abstract

If the measurement noise in a linear dynamic system is non-Gaussian, the optimal linear filter (Kalman filter) is not
necessarily the one with minimum variance. We describe a non-linear filter, based on a Bayesian approach, which performs
better than the linear filter. The relative efficiency of the non-linear filter in the context of track reconstruction is determined
in a simulation study. As the filter presupposes a Gaussian mixture model of the measurement noise, we address the problem
of approximating the distribution of the measurement errors by a Gaussian mixture. We also study the performance of the
filler on some types of long-tailed distributions other than Gaussian mixtures. Finally, the filter is extended to cope with
long-tailed process noise, for example a Gaussian mixture model of multiple scattering.

1. Introduction

Most track reconstruction algorithms currently in use are based on linear least-squares estimators. A typical
example is the Kalman filter plus smoother, now widely used for track and vertex reconstruction in collider
experiments. The justification for using a linear least-squares estimator is twofold. First, it is assumed that the
track model, if not already linear, can be approximated by a linear function, i.e. a first order Taylor expansion,
in a sufficiently large neighbourhood of the measurements. The quality of this linear approximation can in most
cases be improved by a careful choice of the expansion point. Second, it is assumed that the distribution of the
measurement errors is Gaussian, or at least very close to Gaussian. If both of these assumptions hold, the linear
least-squares estimator with the correct weight matrix not only is the best linear estimator, but is efficient. In
this case no non-linear estimator can do better.

In this note we want to investigate the case where the second assumption fails. In real detectors the measure-
ment errors are hardly ever Gaussian, and there is virtually always a tail of outlying observations. In principle
there are two approaches to the treatment of these outliers [1]. In the first approach one tries to identify and
eliminate the outliers. This is an iterative and lengthy procedure, which is not guaranteed to be unambiguous,
particularly if there are several outliers. If one wants to avoid this, there is a second approach: one tries to
accommodate the outliers by a modified robust estimator. For example, outlying measurements can simply be
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downweighted (M-estimator). More sophisticated approaches make use of prior information or assumptions on
the distribution of the outliers. In the following the observation distribution will be modelled by a Gaussian
mixture with two components, the first one describing the “regular” measurements or the “core”, the second one
describing the outliers or the “tails™. It is natural to assume that the variance of the second component is larger
than the variance of the first one, and that outliers are relatively rare with respect to the regular measurements.
This model is in general well-suited to the observations in an actual detector.

A linear least-squares estimator uses only the first and second moment (mean and variance) of the observation
distribution; therefore it is blind to the specific form of the distribution. An estimator taking this form into
account is therefore necessarily non-linear. Non-linear estimators are unpopular for several reasons. Usually they
need more computing time, and their asymptotic properties are less well known. Nevertheless they can have a
smaller variance than the optimal linear estimator if the observation distribution is sufficiently non-Gaussian, for
instance a Gaussian mixture as described above. In Section 2 we present a robust non-linear modification of the
Kalman filter which is based on a proposal of Guttman and Pefia [2]. In Section 3 its efficiency in the context
of track fitting is evaluated on a sample of simulated tracks in an idealized tracking detector. This robust filter
presupposes a Gaussian mixture model of the observation errors. Section 4 deals with the sensitivity of the filter
to the prior assumptions on the mixture parameters and presents a method of estimating the mixture parameters
from a sample of tracks. In Section 5 we extend the investigation of the robust filter to some other types of
long-tailed distributions. Finally, in Section 6 we describe how the robust filter can be adapted to long-tailed
process noise, i.e. to a non-Gaussian model of multiple scattering.

2. A robust non-linear filter

Our starting point is a linear track model suitable for estimation of the track parameters by the Kalman
filter [3]. In most cases the linear track model is actually a first order Taylor approximation to a non-linear
model. The model is specified by a set of system equations and a set of measurement equations.

System equations:

xip=Fexi_1 + ¢, + oy,
E(wy) =0, cov(ewy) =Q,, k=1,...,n

Measurement equations:

m,=Hyx; +d; + €,
E(ex) =0, cov(er) =Vi=G;~', k=1,....n.

Here, x; denotes the state vector of the five track parameters at measurement surface k, i.e. the intersection
point, the track direction, and the curvature. The linear model is described by the system matrix F and the
constant term ¢;. The process noise between surface k — 1 and k is denoted by . If energy loss is neglected,
it is the sum of the integrated continuous multiple scattering plus all discrete scattering between surface k — 1
and k. The measurements in surface k are denoted by m;, and the associated observation error by €. The
linear function which maps the state vector x; on the measurement vector m; is defined by the matrix Hj and
the constant term dj.

The formulas for the computation of the predicted, filtered, and smoothed least-squares estimates of the state
vector are well-known and can be found in the literature [3], along with the formulas for the corresponding
covariance matrices and y?-statistics.

We now assume that the distribution of the observation error €, can be modelled by a Gaussian mixture:
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fler) =p'® - 0(€:0, Vi) + o’V - 0(€;0, Vi), p@ +p D =1,

where ¢(-; m, V) is a multivariate Gaussian p.d.f. with mean @ and covariance matrix V. Vi = (G Py is
the covariance matrix of the regular measurements, V(D = (G) is the covariance matrix of the outliers.
It is reasonable to postulate that p; (@ > p(" and Vi > V(@ although this is not essential to the method.
The covariance matrix of € is given by

Vi = i@ . VO 4 p (D Ly (0,

In order to derive the robust filter step, the distribution of the predicted estimate is approximated by a normal
distribution with mean il,;_l and covariance matrix C’,ﬁ'l, as in the case of the Kalman filter. The posterior
distribution of the estimate x; can then be computed by means of Bayes’ theorem [2]:

1
flxg|my,....m) = qu(i) cp(xp 1,0, G,
=0

with:
ik(i) = ii—l + Ci_lHkTWk(i)ri_l , rllz—l =my —dy — Hki;:_]s
Wk(,') - (Vk(j) + chllz—]HkT)—l’ Ck(i) = [(Cz_l)—l +HkTGk(i)Hk]_1~

The coefficients g;( can be interpreted as the posterior probabilities of the measurement m; being an outlier
or not:

-1
(1) W(l)|

0) _ Pk | k 1 k1T k-1 n_ 0

O EAN 1Wk(°)|eXp<5'k Diry ) oV =1-al

with:
D =W — WD

The final estimate ¥, and its covariance matrix C; are obtained as the mean and the covariance matrix of
the posterior distribution of x;. The update of the state vector turns out to be a weighted sum of two Kalman
filters, the weights being ¢;(® and ¢,V [2]:

o _ k-1 k—1 -
=% +C, HT (¢ Ow,® +qk“)Wk(1))r',§ n
k—1 k=1 gy T 1 1 k—1
Ci=C - T H (WD + g VWD — S ECT
k—1 k—1T
Sk = qk(o)qk(l)Dkrk rl; ! D;.

The posterior distribution of xj, being a mixture of two Gaussians with different means, is asymmetric;

therefore ¥, is in general not identical to the maximum-likelihood or posterior mode estimate. If qk(” =0 or,

a fortiori, px) = 0, the robust filter reduces to the Kalman filter.
The prior p.d.f. of the residual r',z_l is a mixture of two Gaussians with zero mean:

1
FEY =3 p o0,V O + HCT'HT).
i=0

Therefore R’,z_', the covariance matrix of rz_l, is given by:
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k—1 0 - -
R =p OV + p OO 4 BT HT =V + HC BT
The filtered residual is given by:

re=my —dy — Hxy = [ - BC H (g OW O + ¢ OW )17

We compute the derivative of r; w.r.t. ri=!:

Ire/Iri" =1 — HJ, Jo = CHT (¢ OW O 4 g, Ww D — ).

Ji can be considered as a modified gain matrix which reduces to the Kalman gain matrix if g;(!) = 0. Using
Ji, we compute Ry, the covariance matrix of ry, by linear error propagation:

Ri=(I-HJOR'(I-J"HT).

Finally, we obtain a generalized y>-statistic of the filter step. We observe that its y?-increment can be computed
as in the standard case:

Xir=rl Ger + (B — FHT(CE) (7 — #7).

The weight matrix Gy = V;~' can be computed using either the prior or the posterior probabilities, yielding
two different statistics. Neither of them is, of course, actually y?-distributed.

If the prior distribution of xf'l is Gaussian, the posterior distribution of x; is a mixture of two Gaussians.
An exact prediction in the subsequent filter step would result in the posterior of x;;; being a mixture of four
Gaussians, and continuing in this way would yield an exponentially increasing number of components. In order
to keep the filter simple, the posterior distribution of x is approximated in each step by a single Gaussian with
mean ¥; and covariance matrix Cy. It has been shown that this approximation is optimal in the sense that it
minimizes the Kullback-Liebler distance between the two density functions [4]. The smoother is not affected
by the robustification and remains unchanged.

3. The relative efficiency of the non-linear filter

In order to evaluate the possible gain in efficiency by using the robust filter we have conducted a simulation
study in an idealized track detector. In order to simplify the study the detector is assumed to be homogeneous
in the sense that the distribution of the observation error is the same in every measurement surface, irrespective
of the track parameters. Typically this is the case in a central track detector like a TPC or a silicon tracker. The
detector is rotationally symmetric w.r.t. the z-axis and consists of 12 cylindrical measurement surfaces at radii
R =30,35,...,80,85 cm. In every surface two co-ordinates are measured, R® and z, where @ is the azimuth
of the crossing point. The standard deviation of the measurement is assumed to be 0.2 mm for R® and 0.5
mm for z, which are typical values in actual detectors at high energy colliders. The correlation between the
measurements is set to zero. The magnetic field is assumed to be homogeneous and parallel to z, resulting in
a helical track model. We have used a standard sample of 10000 tracks with radii between 300 and 3000 cm,
corresponding roughly to a pr between 1 and 10 GeV at a field of 1.1 Tesla.

We have evaluated the efficiency of the robust filter relative to the optimal linear filter systematically for a
wide range of Gaussian mixture distributions of the observation error. The total variance of the observation
error was the same in every case, corresponding to the standard deviations quoted above. The efficiency of the
estimator is measured by the generalized variance of the five estimated track parameters ¥ = (R®,z, 9, ¢,1/7),
i.e. the determinant of the sample covariance matrix C of (¥ — X))



R. Friihwirth / Computer Physics Communications 85 (1995) 189-199 193

Table 1
Variance of the robust estimate relative to the linear estimate

p= 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

=10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

e=15 1.00 0.994 0.979 0.969 0.962 0.957 0.959 0.960 0.960 0.959 0.960
=20 1.00 0.931 0.854 0.812 0.785 0.777 0.789 0.803 0.819 0.824 0.838
0=25 1.00 0.806 0.662 0.599 0.573 0.566 0.591 0.626 0.668 0.684 0.718
=30 1.00 0.661 0.492 0.431 0.412 0.413 0.446 0.495 0.557 0.583 0.635
=35 1.00 0.523 0.363 0.326 0312 0.328 0.366 0.417 0.495 0.524 0.585
=40 1.00 0.406 0.269 0.255 0.246 0.273 0.317 0.378 0.467 0.498 0.568
o=45 1.00 0310 0.207 0213 0.214 0.243 0.301 0.364 0.468 0.501 0.568
=50 1.00 0.271 0.178 0.190 0.202 0.234 0.301 0.359 0.482 0.521 0.588

C=E[(% — x/ue) (X — xrrue)T] — [E(® — x¢rue) ] [E(X — xtme)IT’

where the expectation operator denotes the sample average.

As the detector is homogeneous the Gaussian mixture distribution can be specified by two global parameters
p and p, where p < % is the probability of an outlier and ¢ > 1 is the ratio of standard deviations o /. If
the variance of the observation error is denoted by o2, then

oo=0*/(1-p+pe®), o1=0"0"/(1—p+pd).

For the sake of simplicity, the same values of p and g are chosen for both R®- and z-measurements.

Table 1 shows the inverse relative efficiency 5 of the robust filter, i.e. the generalized variance of the robust
estimate divided by the generalized variance of the optimal linear estimate. Note that both p = 0 and ¢ =1
yield the optimal linear filter. The prior probabilities and the respective variances of regular measurements and
outliers required by the robust filter have been set to the true values used in the simulation of the measurements.
The issue of estimating these quantities from the data will be addressed in the next section.

It is fortunate that the robust filter yields the largest gain in efficiency for relatively small outlier probabilities
between 10% and 20%, i.e. precisely in the range which is the most relevant for applications to track recon-
struction. In the realistic case of 20% contamination and threefold standard deviation of the tails the generalized
variance of the robust estimate is about 40% of the generalized variance of the optimal linear estimate, a
non-negligible gain of information.

Fig. 1 shows the normalized differences of the estimated and the true values of the track parameters for
both the Kalman filter and the robust filter, for p = 0.2 and o = 3. In addition, a Gaussian has been fitted to
both frequency distributions. In the case of the Kalman filter, the distribution of the normalized differences is
correct as far as the first two moments are concerned, although the shape is not a perfect Gaussian. This is also
reflected in the fact that the standard deviation of the fitted Gaussian is significantly smaller than 1. With the
robust filter, the shape is nearly Gaussian, the fitted standard deviation being closer to the r.m.s. of the observed
frequency distribution. However, the r.m.s. is about 10% too large, indicating that the covariance matrix of the
estimate is somewhat too small. Clearly, the robust filter, like the linear filter, is unbiased.

The distribution of the y?-probability of both filters is shown in Fig. 2. The probability of the Kalman filter
(a) displays the U-shape characteristic for data contaminated with outliers. The average x? is, however, correct,
as it is bound to be with the linear estimator. With the robust filter, the x? can be computed in two ways,
cither with the prior probabilities (b) or with the posterior probabilities (c). Whereas (b) looks similar to (a),
the distribution in (c¢) is much closer to a uniform distribution, although there is still a spike at very small
probabilities, the average y* being slightly too large (20.6 instead of 19.0).
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Fig. 1. Normalized residuals of the estimated track parameters (p=0.2, p=3).

Fig. 2. Probability transform of the total y? (p=02, p=3).
4. Determination of mixture parameters

The results of the preceding section have been obtained by plugging the correct mixture model into the
robust filter. This is of course possible only with simulated data. In a real-world application the model has to
be determined from a selected subsample of tracks, possibly from a calibration experiment. We now turn to the
problem of estimating the mixture parameters from such a sample of tracks. The first question which arises in
this context is the following: How sensitive is the filter to wrong assumptions on the mixture parameters? In
order to find an answer we have simulated a sample of tracks with p = 0.2 and ¢ = 3. The sample was then
reconstructed with different prior values of p and g. Table 2 shows the generalized variance of the estimate
relative to the estimate with the correct model.

The table shows that — at least in this example — the filter is not very sensitive to the prior assumptions on
the mixture model. It is somewhat unexpected that some of the entries are smaller than 1, implying that the
correct model does not yield the estimator with the smallest variance. For values of ¢ smaller than the true
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Table 2
Variance of the robust estimate relative to the correct model (p=0.2, p=3)

p= 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
=10 243 243 243 243 243 243 243 243 243 243 243
o=15 243 1.87 1.69 1.59 1.52 1.48 1.45 1.44 1.44 1.46 1.48
0=2.0 243 1.50 1.27 1.15 1.08 1.03 1.01 1.00 1.00 1.02 1.04
0=25 243 1.36 1.13 1.02 0.96 0.93 0.92 0.92 092 0.93 0.95
=30 243 1.32 1.11 1.03 1.00 1.00 1.01 1.01 1.02 1.02 1.02
0=35 243 132 1.16 1.16 1.19 1.22 1.24 1.25 1.25 1.23 1.20
0=40 243 1.36 1.32 1.41 1.50 1.59 1.64 1.66 1.62 1.58 1.48
=45 243 1.44 1.63 1.85 2.08 225 233 2.30 2.19 203 1.86
=50 243 1.58 2.08 2.57 3.07 335 338 323 297 2.66 2.34

one, the relative variance is remarkably flat, indicating little sensitivity to the choice of p. In contrast, if o is
larger than the true value we observe a curious, doubly peaked functional dependence on p, which is difficult
to explain by a straightforward argument. The smallest relative variance is obtained if the width of the outlier
distribution is slightly underestimated and the frequency of outliers is overestimated.

Our method of estimating the mixture model parameters is based on the observation that the moments of
the y?-statistic of the linear filter can be calculated explicitely. We propose to estimate o?, p and o from the
first three moments. Although the functional dependence of the moments on o2, p and g cannot be inverted
analytically, it can be inverted numerically, thus yielding the desired estimator.

Actually, the linear filter is equivalent to a linear regression. The regression model can be written in the
following form:

y=A-x+b+e,

where y is the vector of measurements, A and b specify the linear model, and x is the vector of track parameters.
If multiple scattering is neglected, the covariance matrix of € is diagonal. As the measurements of R® and z
are uncorrelated, we set up two separate regression models, one for (R®, ¢, 1/r), one for (z,%,1/r). Thus
the dimension of y is n = 12, and the dimension of x is m = 3. A can be assumed to have rank m. The
distribution of € is in both cases a Gaussian mixture of 2!? = 4096 components. Each component is described
by a multi-index I € {0, 1}". If I; =0, y; is a regular measurement, otherwise it is an outlier. The covariance
matrix of the component with index / is given by

V; =diag(0'%|,‘..,0'3 ),

”

where 73 is the variance of the regular measurements and o7 is the variance of the outliers. Under the assumption
that the occurence of outliers is independent in different measurements, the proportion p; of component / in
the mixture turns out to be

n
pr=—p)" . pH 2=
=1

The y’-statistic of the regression can be written as
X’=(-b0"B(y-b), B=I—A(A"A)'AT.

B is symmetric and idempotent, and tr(B) = n — m. Let us now consider the distribution of x? conditional on
a fixed component 1. The conditional cumulants of y? are given by [5, p. 3571:



196 R. Frithwirth / Computer Physics Communications 85 (1995) 189—199

Table 3
True versus estimated parameters of the Gaussian mixture model

True values Estimated values

P Qo n TRep 14 o n
0.15 225 0.705 0.201 0.13 228 0.709
0.15 2.75 0.507 0.201 0.13 2.77 0511
0.15 3.25 0.372 0.201 0.14 3.29 0.375
0.25 2.25 0.668 0.201 0.23 2.25 0.671
0.25 275 0.481 0.201 0.24 2.73 0.480
0.25 3.25 0.365 0.201 0.25 3.25 0.365

)l =27 s — DI [(SBS)'], s>1,

where §; is a square root of V;. Next, we compute the conditional moments u! about 0 up to order 3 via the
relations [5, p. 69]:

2 3
T uy =5+ (kh)”, #§=K§+3K£K{ + (K{) .

It is easily seen that the moments around 0 of the unconditional distribution of y? are mixtures of the conditional
moments, the proportion of u! being equal to p;:

me=> prut, s=1,2,3.
!

In particular, the expectation of y? is given by
E(x)) =) pitr(§BS) =0’ (n—m),
1

a well-known result. From this relation we can estimate the total variance of e.

There remain two more parameters, p and @, to be determined from the second and third moment of
the distribution of y2. To this end we have tabulated the standard deviation and the skewness of y? for
p =0.5(0.02)1.0 and ¢ = 1.0(0.5)5.0. The inverse function, i.e. p and o as a function of standard deviation
and skewness of the y’-distribution of the sample, can be approximated most easily by training a neural network
of the multi-layer perceptron type, which is in fact an universal approximator [6]. We have used the JETNET
package [7] to implement the inverse function on a 2-layer perceptron with 2 inputs, 2 outputs, and 20 hidden
neurons. The hidden layer has logistic activation, the output layer is linear. Table 3 shows the estimated mixture
model parameters for some selected values of p and o, which are not in the table. Also shown is the resulting
n-value of the robust estimator, i.e. its variance divided by the variance of the linear estimator. The same
procedure can be repeated independently for z (not shown).

Although we have no proof that the estimate of p and g is consistent or unbiased, the results indicate that
the estimation procedure works well and leads to prior models which are only marginally worse than the ones
obtained by using the true values. Only a small sample of about 10000 tracks is required to this purpose. In
order to minimize multiple scattering, high-energy tracks should be selected.

This method of estimating the parameters of the mixture model has, however, obvious limitations: it works
only in a homogeneous detector in which multiple scattering can be neglected. If the prior probability of an
outlier or the width of the outlier distribution varies within the detector, there is a profusion of parameters tc
be determined, and the procedure breaks down.
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Table 4
Relative variance of the robust estimate for exponential and r-distributed tails

Error distribution True model Estimated model Best model

14 o r o n 14 o n
Gaussian with exp. tails 02 20 0.04 3.33 0.719 0.16 22 0.660
Gaussian with exp. tails 0.2 3.0 0.04 431 0.469 0.24 2.6 0.323
Gaussian with r7-tails 0.2 2.0 0.02 3.30 0.794 0.18 2.0 0.725
Gaussian with r7-tails 0.2 3.0 0.03 4.02 0.559 0.26 26 0.367

5. Application to other long-tailed distributions

We have shown in the preceding sections that the non-linear filter is robust with respect to outliers generated
by a Gaussian mixture model. This is not surprising as the prior density which is entered into Bayes’ theorem
is precisely of this form. Next we want to investigate to which extent the robustness extends to other types of
long-tailed distributions. We consider two types of such distributions, a mixture of a Gaussian with a “Student’s”
t, the tail of which is a rational function, and a mixture of a Gaussian with a double exponential. The mixture is
again described by two global parameters p and g, as in the case of a mixture of two Gaussians. The resulting
distribution is scaled such that the standard deviation is equal to the values quoted above (0.2 mm in R® and
0.5 mm in z). In all cases the Gaussian mixture model required by the filter is determined from the simulated
sample by the method outlined in the preceding section.

We have simulated four samples of tracks, two with tails according to a z-distribution with seven degrees of
freedom, and two with double exponential tails. The tails of the t;-distribution decay like x—*, whereas the tails
of the double exponential decay like e~*. Table 4 summarizes the performance of the robust filter. The central
three columns contain the values obtained by plugging in the mixture model estimated from the data, whereas
the last three columns show the best values obtained by a search in the (p, ¢)-plane.

Obviously the estimates of the prior model parameters are rather poor. This is not surprising as the method
has been developed under the assumption of a Gaussian mixture distribution of the observation errors. Even so,
the robust filter still does better than the linear filter, shown by the values of n which are smaller than 1. If
one uses the best values, the relative efficiency of the estimate is comparable to the case of Gaussian mixture
errors. The robustness of the filter therefore is not confined to Gaussian tails.

6. Extension to non-Gaussian process noise

The robust filter can be modified to cope with non-Gaussian process noise. The primary source of process
noise in track fitting is multiple Coulomb scattering. Note that for electrons also energy loss is serious and
must be considered as a stochastic process. The distribution of the energy loss is however asymmetric and very
skew, so that a Gaussian mixture is not a very suitable model. On the other hand, multiple scattering usually is
considered as being Gaussian and treated as such, for lack of an alternative. The distribution of the projected
deflection angle is indeed close to a Gaussian by virtue of the central limit theorem, provided that the scatterer
is sufficiently thick and that all single scatters are sufficiently small to allow linear superposition. However, it
seems to be a fact that rare processes like nuclear scattering (for hadrons) and hard single Coulomb scattering
add some tails to the Gaussian core which we can try to take into account by the robust filter. The robustification
could also be useful for the treatment of scattering in very thin layers to which the central limit theorem cannot
be applied.

First, we assume a Gaussian mixture model of the process noise:
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fler) = - 0(050,0,'V) + 'V 0(@4,0,0,"),  p® +pP =1

It is to be expected that @, > @,® and p,'® > p,V). Now the distribution of x%~! is a mixture of two
Gaussians:

1
k-1 - o1 kel et ()
F m o ome) =Y g e E LN,
=0

with:

—1(0) i
Cllz 1 =Fka_|FkT+Qk(l).

If the distribution of my; is assumed to be Gaussian with covariance matrix V), one obtains the following
posterior p.d.f. of xj:

1
Flxplmy, ... ,myg) = thm co(xi 8,0,
i=0

with:

ik(i) = ili—l + Kk(i)ri—l, Kk(i) = Ci_l(l)HkTWk(i)’
W = (Vi + RGBT, 60 = - KOE) Y.

The coefficients g;(? are now interpreted as the posterior probabilities of the scattering event being in the core
or in the tail of the distribution. Formally they are the same as in Section 2:

LA
2e© [W, O]

(0

-1
T -
g’ = exp (%r’,ﬁ ! Dkrlg ')] ) o'V =1-q,,

with:
D =W, 0 — W,
The filter is again a weighted sum of two Kalman filters:
=2+ @Ok + e VK D)
Ce= V¢ + gV + g Vg V(K — KOy (KO - KO

We are not aware of any Gaussian mixture model of multiple Coulomb scattering plus nuclear and hard
single Coulomb scattering which is based on theoretical considerations or experimental data. The only way to
proceed at the moment seems to be to make some reasonable prior assumptions on the tails and to tune these
with real tracks.

7. Conclusions

We have shown that in a linear model with symmetric long-tailed measurement noise a non-linear robust
filter based on a Bayesian approach has smaller variance than the optimal linear filter (Kalman filter). If the
distribution of the observation error is a Gaussian mixture of a narrow core and long tails, the parameters of
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the mixture model required for the non-linear filter can be determined with sufficient precision from the higher
moments of the y?-statistic of the linear filter. Only a relatively small subsample of tracks is required to this
end. For other types of long-tailed error distributions this process is more difficult. If the number of parameters
which have to be determined is small the problem can be solved by a search in the parameter space. Due to
this limitation, the method seems to be best suited to track fitting in a homogeneous detector, for example a
TPC or a silicon tracker. The robust filter is actually a linear combination of two Kalman filters, and both
the prediction and the smoothing steps are the same as with the linear filter. Therefore the implementation is
straightforward, and the speed is comparable to that of the Kalman filter.

We also have shown how the filter can be modified to deal with long-tailed process noise. A necessary
prerequisite, however, is a Gaussian mixture model of multiple Coulomb scattering and other types of scattering
processes, like nuclear scattering and hard single Coulomb scattering. Such a model, based either on theoretical
considerations or on experimental measurements, would allow us to take into account the actual distribution of
rare processes, not only their mean-squared properties, as is necessarily the case with a linear filter. As long as
such a model is not available one has to resort to a heuristic procedure. The distribution of the Gaussian core
is relatively well known, so it is probably sufficient to start with some reasonable assumptions on the tails and
to tune the mixture proportions and the width of the tails with real tracks.
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