Consider two populations of longitudinally polarized muons at rest in the laboratory, one fully polarized along Oz $(N_1(t))$ at time t) and the other fully polarized in the opposite direction $(N_2(t))$ at time t). They both decay with the muon lifetime (decay rate λ_0), but, due to a spin-flip interaction, there is a transfer from one population to the other (transfer rate λ). This gives the coupled differential equations:

$$\frac{dN_1}{dt} = -\lambda_0 N_1 - \lambda N_1 + \lambda N_2
\frac{dN_2}{dt} = -\lambda_0 N_2 - \lambda N_2 + \lambda N_1$$
(1)

$$\frac{d}{dt}(N_1 + N_2) = -\lambda_0(N_1 + N_2)
\frac{d}{dt}(N_1 - N_2) = -(\lambda_0 + 2\lambda)(N_1 - N_2)$$
(2)

The solution, including initial conditions, is:

$$N_1(t) + N_2(t) = [N_1(0) + N_2(0)] \exp(-\lambda_0 t)$$

$$N_1(t) - N_2(t) = [N_1(0) - N_2(0)] \exp[-(\lambda_0 + 2\lambda)t]$$
(3)

and:

$$\frac{N_1(t) - N_2(t)}{N_1(t) + N_2(t)} = \frac{N_1(0) - N_2(0)}{N_1(0) - N_2(0)} \exp(-2\lambda t)$$
(4)

This is the degree of polarization P(t) of the muon ensemble:

$$P(t) = P(0)\exp(-2\lambda t) \tag{5}$$

It decays with the decay constant 2λ . Also:

$$N_{1}(t) = \frac{1}{2} \exp(-\lambda_{0}t) \left\{ N_{1}(0)[1 + \exp(-2\lambda t)] + N_{2}(0)[1 - \exp(-2\lambda t)] \right\}$$

$$N_{2}(t) = \frac{1}{2} \exp(-\lambda_{0}t) \left\{ N_{1}(0)[1 - \exp(-2\lambda t)] + N_{2}(0)[1 + \exp(-2\lambda t)] \right\}$$
(6)

Assuming that the initial state is a pure state of polarization along Oz, the initial conditions are:

$$N_1(0) = 1 N_2(0) = 0 (7)$$

this gives:

$$N_{1}(t) = \frac{1}{2} \exp(-\lambda_{0}t)[1 + \exp(-2\lambda t)]$$

$$N_{2}(t) = \frac{1}{2} \exp(-\lambda_{0}t)[1 - \exp(-2\lambda t)]$$
(8)

or, by using the dimensionless variable τ :

$$N_{1}(t) = \frac{1}{2} \exp(-\tau)[1 + \exp(-2\alpha\tau)]$$

$$N_{2}(t) = \frac{1}{2} \exp(-\tau)[1 - \exp(-2\alpha\tau)]$$
(9)

with $\lambda_0 t = \tau$ and $\alpha = \lambda/\lambda_0$.

In the following figures are plotted, for three different values of α :

- 1. $N_1(t)$: first population of muons.
- 2. $N_2(t)$: second population of muons.
- 3. $N_1(t) + N_2(t)$: total population of muons. It decays with the muon decay constant λ_0 .
- 4. $P(t) = (N_1(t) N_2(t))/(N_1(t) + N_2(t))$: degree of polarization. It decays with the decay constant 2λ .

The time τ is in units of the muon lifetime.

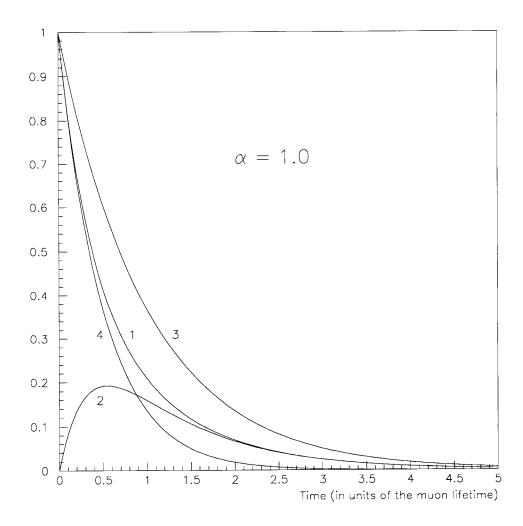


Figure 1: Time evolution of the two populations of muons. Case $\alpha = 1.0$.

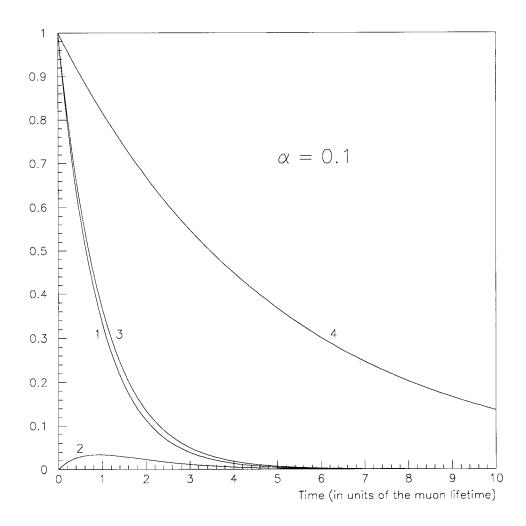


Figure 2: Time evolution of the two populations of muons. Case $\alpha = 0.1$.

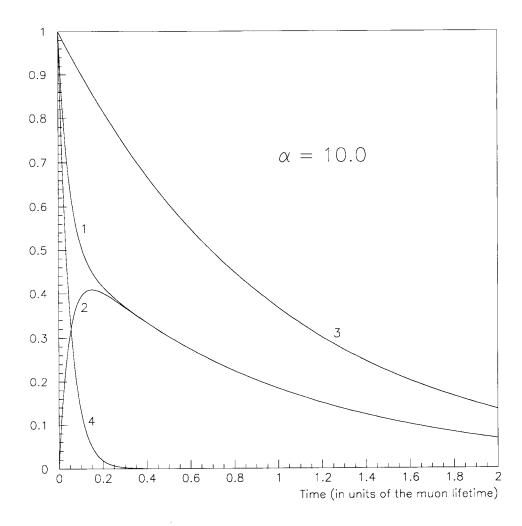


Figure 3: Time evolution of the two populations of muons. Case $\alpha=10.0$.

Let us now study the shape of the positron spectrum and the positron asymmetry as a function of time. The general expression for the energy and angular distributions of the positron is:

$$rac{d^2\Gamma}{dx d(\cos heta)} = (x^2 - x_0^2)^{1/2}iggl\{ 6x(1-x) + rac{4}{3}
ho(4x^2 - 3x - x_0^2) + 6\eta x_0(1-x) iggr\}$$

$$+P_{\mu}\xi\cos heta\,\left(x^2-x_0^2
ight)^{1/2}igg[2(1-x)+rac{4}{3}\,\,\deltaigg(4x-4+(1-x_0^2)^{1/2}igg)igg]igg\} \eqno(10)$$

In the following the positron mass will be neglected $(x_0 = 0)$:

$$\frac{d^2\Gamma}{dxd(\cos\theta)} = x^2 \left\{ 6(1-x) + \frac{4}{3} \rho(4x-3) + P_{\mu}\xi \cos\theta \left[2(1-x) + \frac{4}{3} \delta\left(4x-3\right) \right] \right\}$$
(11)

Assuming the standard values for ρ and δ :

$$\frac{d^2\Gamma}{dxd(\cos\theta)} = x^2 \left[(3-2x) + P_{\mu}\xi\cos\theta(2x-1) \right] \tag{12}$$

The asymmetry is:

$$A(x) = P_{\mu}\xi \cos\theta \frac{2x - 1}{3 - 2x} \tag{13}$$

For $P_{\mu}\xi = +1$:

$$\frac{d^2\Gamma}{dxd(\cos\theta)} = x^2 \left[(3-2x) + \cos\theta \, (2x-1) \right] \tag{14}$$

$$A(x) = \cos\theta \frac{2x - 1}{3 - 2x} \tag{15}$$

For $\cos \theta = +1$:

$$\frac{d\Gamma}{dx} = 2x^2 \tag{16}$$

$$A(x) = \frac{2x - 1}{3 - 2x} \tag{17}$$

For $\cos \theta = -1$:

$$\frac{d\Gamma}{dx} = 4x^2(1-x) \tag{18}$$

$$A(x) = -\frac{2x - 1}{3 - 2x} \tag{19}$$

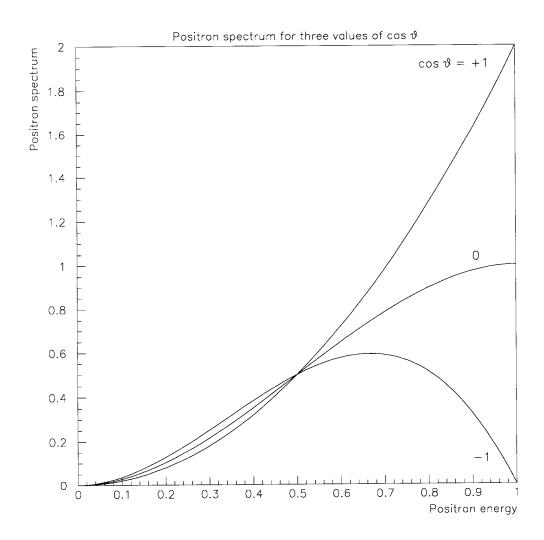


Figure 4: Positron spectrum for three values of $\cos \theta$.

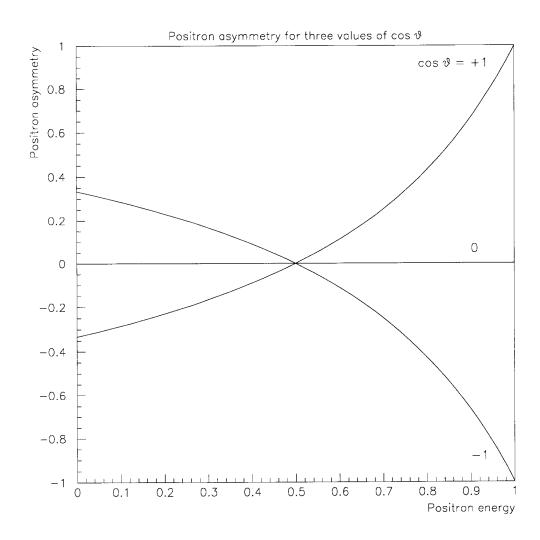


Figure 5: Positron asymmetry for three values of $\cos \theta$.

Assuming that positrons are detected in one direction, the positron spectrum will be a function of time:

$$S(x,t) = N_1(t)[2x^2] + N_2(t)[4x^2(1-x)]$$
 (20)

and the asymmetry:

$$A(x,t) = \frac{N_1(t) - N_2(t)}{N_1(t) + N_2(t)} \frac{2x - 1}{3 - 2x}$$
 (21)

The following figures show the content of various energy bins (1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0,1) for two cases of initial conditions:

- $N_1 = 1, N_2 = 0.$
- $N_1 = 0, N_2 = 1.$

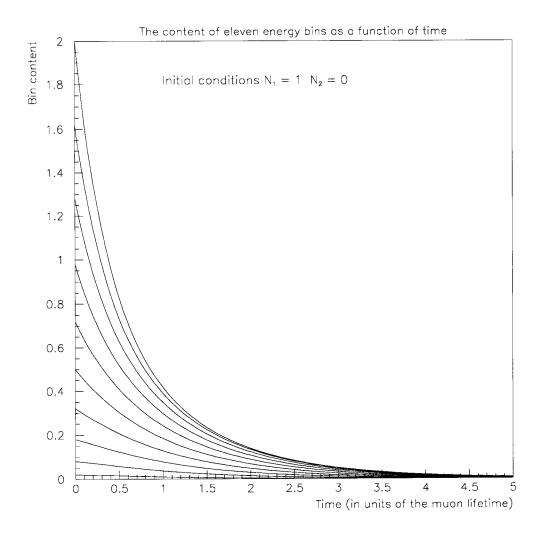


Figure 6: Content of eleven energy bins. Case $\alpha = 1.0$. Initial conditions: $N_1 = 1, N_2 = 0$.

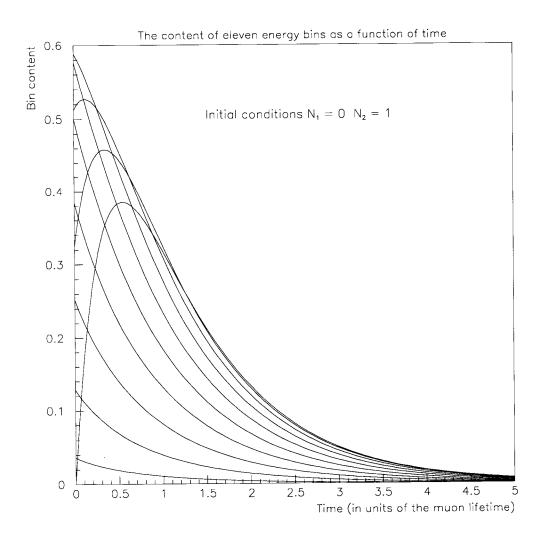


Figure 7: Content of eleven energy bins. Case $\alpha = 1.0$. Initial conditions: $N_1 = 0, N_2 = 1$.

The following figures show the content of various asymmetry bins (1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0,1) for two cases of initial conditions:

- $N_1 = 1, N_2 = 0.$
- $N_1 = 0, N_2 = 1.$

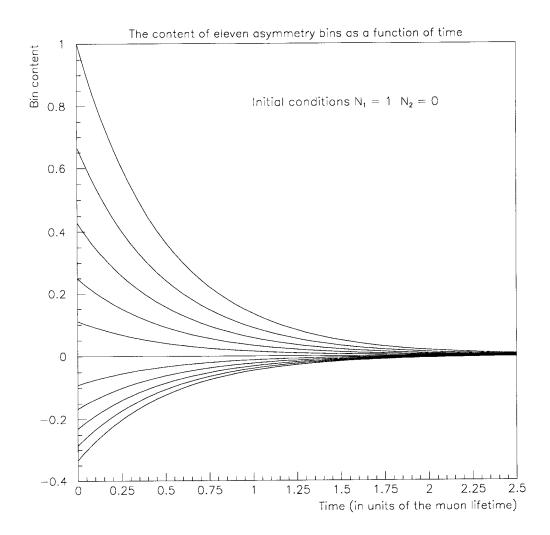


Figure 8: Content of eleven asymmetry bins. Case $\alpha=1.0$. Initial conditions: $N_1=1,\,N_2=0$.

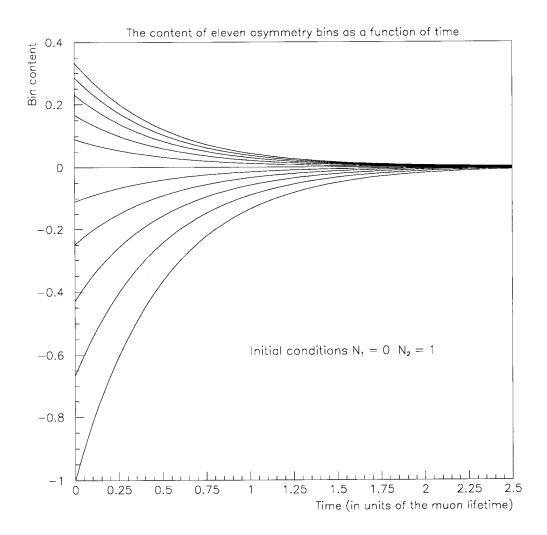


Figure 9: Content of eleven asymmetry bins. Case $\alpha = 1.0$. Initial conditions: $N_1 = 0, N_2 = 1$.

The following figures show the positron spectrum and positron asymmetry as functions of time for different initial conditions:



Figure 10: Positron spectrum. Case $\alpha=1.0$. Initial conditions: $N_1=1,\ N_2=0$.

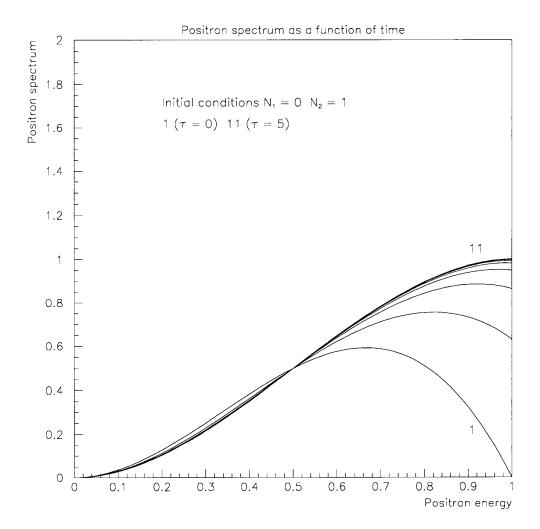


Figure 11: Positron spectrum. Case $\alpha = 1.0$. Initial conditions: $N_1 = 0$, $N_2 = 1$.

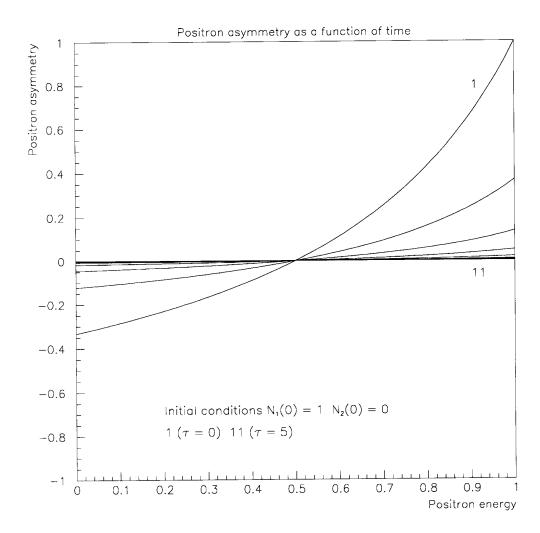


Figure 12: Positron asymmetry. Case $\alpha=1.0$. Initial conditions: $N_1=1,\,N_2=0$.

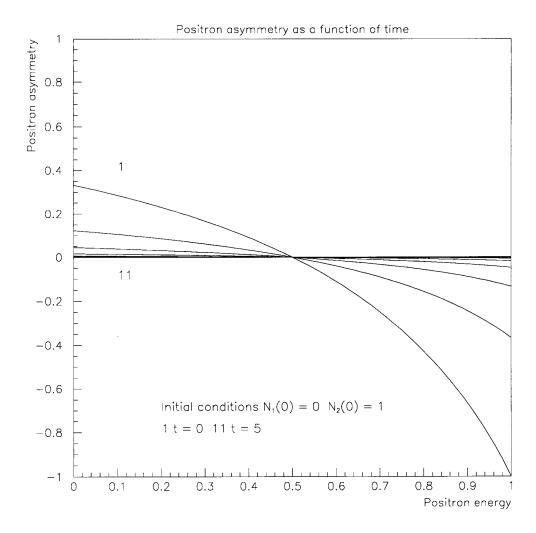


Figure 13: Positron asymmetry. Case $\alpha=1.0$. Initial conditions: $N_1=0,\,N_2=1$.

November 29, 12:00