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Abstract

We discuss a maximum likelihood method for determining a charged particle’s momentum as it moves in a magnetic

field. The formalism is presented in both rigorous and approximate forms. The rigorous form is valid when random

processes include multiple scattering, energy loss and detector spatial resolution. When the measurement error is

dominated by multiple scattering, it takes a particularly simple approximate form. The validity of both formalisms

extends to include non-Gaussian multiple scattering distribution.

r 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Track fitting (determining the best estimate of
the kinematic properties of a particle from a set of
measured positions) is a standard problem in
experimental particle physics. This paper discusses
a method for determining the momentum of a
charged particle moving in a magnetic field, using
a set of position measurements and including the
effects of multiple scattering, energy loss and
detector spatial resolution.

This work is motivated by considering the
measurement of 105 MeV electrons in an experi-
ment [1] to search for the coherent conversion of

muons to electrons in the field of a nucleus. To
reduce backgrounds, it is required that the
momentum be measured with a precision of order
dP=P ¼ 0:001: Fig. 1 shows three-dimensional and
cut views of a typical electron trajectory in the
detector; the particle crosses the detector 7 times
and each time one measurement of x; y and z is
recorded. The detector is in a uniform 1 T
magnetic field, which corresponds to r ¼ 25 cm
for a typical electron that has a total momentum
of 105 MeV=c and a momentum transverse to the
magnetic field of 75 MeV=c: The detailed con-
struction of the detector is not important for this
discussion, but for completeness we briefly de-
scribe it. It consists of three layers of 5 mm
diameter straw tubes arranged in a cylinder and
eight vanes extending radially outward from the
cylinder; all individual detector elements are
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parallel to the field direction. Each detector plane
corresponds to B0:1 g=cm2 of path length tra-
versed by a typical particle’s trajectory. The axial
coordinate will be measured by capacitive coupling
to foils on the outside of the straw tubes. The
radius of the cylinder is 40 cm; the radial extent of
each vane is 30 cm and the detector length is
200 cm:

Throughout this discussion, we only consider the
case of uniform B field and note that the method
can be readily generalized to any well measured B

field. The particle’s momentum is determined by
the shape of the helical trajectory. Denoting the
particle’s perpendicular, axial and total momenta
as P>; P8 and P; respectively, one has

P> ¼ Cr ð1Þ

P8 ¼ C
dz

df
ð2Þ

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
> þ P2

8

q
ð3Þ

where r is the radius of the helix, dz=df is the axial
displacement per radian and z is along the
magnetic field direction. C is a constant, and C ¼
jqjB=c in Gaussian units, where q is the charge, B is
the value of the magnetic field and c is the speed of
light.

Assuming n sequential position measurements
on the trajectory, ðx1; y1; z1Þ;y; ðxn; yn; znÞ; one
can reconstruct the helix path to calculate the
particle momentum. However, the particle’s actual
trajectory deviates from a helix due to multiple
scattering and energy loss in the detector. Finite
position resolution of the detector also contributes
to deviations of measured positions from those of
a perfect helix. When the particle momentum is
low, multiple scattering is often the dominant
source of error, as is the case in this experiment
[1]. This introduces point-to-point correlations
between the deviations of the measured positions
from those of an ideal trajectory.

One way of dealing with such correlations is to
use an error matrix that accounts for the effect of

Fig. 1. The plot shows three-dimensional, side and end views of a typical electron trajectory in the detector [1]. The 105 MeV electron

crosses the detector 7 times in a uniform 1 T region. The crossings are indicated by dots.
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scattering. In general, the elements of this matrix
strongly depend on the measured positions,
complicating the analysis. Furthermore, use of an
error matrix explicitly assumes a Gaussian form
for the error probability distribution; this is not
true, since the Moliere scattering angle distribution
is not Gaussian at large scattering angles.

Various other techniques already exist to deal
with the effects of multiple scattering, including
use of the Kalman filter [2–4] and fitting of a
kinked trajectory [5]. However, these methods
suffer from the same drawbacks mentioned above,
namely, they apply to Gaussian errors and linear
systems. Consequently, they are only good for
small perturbations from an ideal trajectory.
Furthermore, these techniques are most effective
for determining the particle’s coordinates and do
not directly provide the best estimate of the
particle momentum.

Here we present a maximum likelihood algo-
rithm to estimate the particle momentum, which
removes any assumption about Gaussian error
distributions. We start with a general discussion of
the maximum likelihood method in Section 2, then
we apply these ideas to derive the best momentum
estimate in Section 3. We will first derive the
rigorous form of the likelihood function, taking
into account the effects of multiple scattering,
energy loss in detector and detector spatial
resolution. We then simplify the expression when
multiple scattering is the dominant source of error
and show that the approximate form retains good
accuracy.

2. General discussions of the likelihood method

Our goal is to determine a set of k parameters
a1;y; ak; from N measurements ðm1;y;mN Þ: For
example, the parameters can be a particle’s
momentum and its initial position, and the
measurement can be the position coordinates as
it goes through the detector system. The likelihood
method is used to determine the most likely values
of those parameters given the measurements.
Without loss of generality, we assume all a’s and
m’s are continuous variables. In that case, L should
be understood as a likelihood density. In order to

calculate it, we need to consider finite intervals in
the parameter and measurement space.

In general, the N measurements are constrained
by the detector geometry so that they are not all
independent of each other. Consider another
measurement of ðm1 þ Dm1; m2 þ Dm2;y; mN þ
DmNÞ; also consistent with the detector geometry,
where all D’s are infinitesimally small. We can
always assume that only the first m ðmpNÞ D’s
are independent, and the other ones are linear
combinations of the first m D’s. As a result, one
has the following ðN � mÞ equations:

Dmi ¼ Mij Dmj ; j ¼ 1;y;m i ¼ ðm þ 1Þ;y;N :

ð4Þ

An example of non-independent measurements are
the coordinates x; y and z in a planar detector, for
which only two of them are independent.

We are to find the probability L that the k

parameters, with values a1;y; ak within infinitesi-
mal variations Da1;y;Dak; produce the N mea-
surements ðm1;y; mNÞ within Dm1;y;Dmm of the
first m m’s. We note that all D’s are only
mathematical symbols having nothing to do with
the actual finite detector resolution.

As a trivial generalization of Bayes’ theorem [6],
L can be written as

L ¼ LaLb ð5Þ

where La is the a priori probability that the k

parameters take values a1;y; ak within infinitesi-
mal variations Da1;y;Dak: It is usually set to be a
constant when performing the likelihood method,
assuming all hypotheses are a priori equally likely.

Lb is the probability of the k parameters
producing the N measurements ðm1;y;mNÞ within
Dm1;y;Dmm of the first m m’s. It is a function of
both the m’s and the a’s. In general, it also depends
on the values of Mij : Determining the functional
form of Lb is the central task of the likelihood
method.

3. Determining particle momentum using the

maximum likelihood method

Next we utilize the general principles outlined
above to derive the best estimate of the particle
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momentum. Throughout the discussion, we as-
sume that detected signals are correctly associated
with the particles that we are measuring. In
addition, we assume the detector thickness is
negligible compared with the helical radius such
that scattering can be treated as happening at one
space point. In this section, we will first derive the
rigorous form of the likelihood function, taking
into account the effects of multiple scattering,
energy loss in the detector and detector spatial
resolution. Then we derive its approximate form
when multiple scattering is the dominant source of
error. Lastly we discuss the accuracy and perfor-
mance.

3.1. The rigorous form of the likelihood function

We start with the simplest case where the only
deviation from an ideal trajectory comes from
multiple scattering at positions where the trajec-
tory is measured. In that case, P is conserved; P>

and P8 are not. We have 3n successive measured
coordinates: ðx1; y1; z1Þ;y; ðxn; yn; znÞ at detector
elements 1–n: Assuming all detectors are two-
dimensional, one has N ¼ 3n and m ¼ 2n: If we
choose Dx1;y;Dxn;Dy1;y;Dyn to be the inde-
pendent variables, Eq. (4) becomes

Dzi ¼ sxi
Dxi þ syi

Dyi; i ¼ 1;y; n ð6Þ

where sxi
and syi

depend on the orientation of
detector element i if it is planar. If the detector is
not planar, one needs to consider the tangent plane
to the detector surface at the measurement point i:

We define five parameters P; n1; n2; a1 and a2:
The parameter P refers to the magnitude of the
particle’s initial momentum into the detector, and
its direction is specified by n1 and n2: The
parameters a1 and a2 refer to x and y coordinates
where the particle intercepts the first detector
element. Taking La to be constant, we have from
Eq. (5)

LðP; a1; a2; n1; n2Þpdða1 � x1Þdða2 � y1ÞDx1 Dy1

�
Yn�1

i¼1

fiðyiÞ DOi

( )
ð7Þ

where d represents the Dirac delta function, and
fiðyiÞ dO is the probability that a particle scatters

with angle yi into dO at position i: DOi is the solid
angle for a particle of momentum P following a
helical trajectory exiting detector element i at point
ðxi; yi; ziÞ to enter detector element ði þ 1Þ at point
ðxiþ1; yiþ1; ziþ1Þ within Dxiþ1 and Dyiþ1: Again, we
are working under the assumption that the only
deviation from an ideal trajectory comes from
multiple scattering.

One can write down the following relation for
each i ð1pipðn � 1ÞÞ:

DOi � Qi Dxiþ1 Dyiþ1 ð8Þ

where Qi is a non-negative Jacobian term arising
from coordinate transformation. Its value depends
on the geometry of detector element ði þ 1Þ as well
as the helical trajectory between the two points ðiÞ
and ði þ 1Þ: It depends only on P and not on
a1; a2; n1 or n2: With no magnetic field or when P is
very large such that the B field can be neglected,
the particle follows a straight line trajectory and Qi

is independent of P and hence can be dropped. In
general, when the B field cannot be neglected, the
calculation of Qi is straightforward but tedious.
More details on Qi will be discussed in the
appendix.

In order to determine the most probable value
of P; we define a likelihood as a function of P by
integrating Eq. (7):

LðPÞ

�
Z Z Z Z

LðP; a1; a2; n1; n2Þ da1 da2 dn1 dn2

p

Z Z Z Z
dða1 � x1Þdða2 � y1Þ

� Dx1 Dy1

Yn�1

i¼1

fiðyiÞ DOi

( )
da1 da2 dn1 dn2

¼
Z Z

Dx1 Dy1

Yn�1

i¼1

fiðyiÞ DOi

( )
dn1 dn2 ð9Þ

¼Dx1 Dy1 DO1

Yn�1

i¼2

fiðyiÞ DOi

( )

�
Z Z

f1ðy1Þ dn1 dn2 ð10Þ

Tingjun. Liu, William. Molzon / Nuclear Instruments and Methods in Physics Research A 496 (2003) 172–182 175



¼ Dx1 Dy1 DO1

Yn�1

i¼2

fiðyiÞ DOi

( )
ð11Þ

¼
Yn�1

i¼2

fiðyiÞ
Yn�1

i¼1

Qi

Yn

i¼1

Dxi Dyi

( )

p

Yn�1

i¼2

fiðyiÞ
Yn�1

i¼1

Qi: ð12Þ

In going from Eq. (10) to (11), we used the relation
that

R R
f1ðy1Þ dn1 dn2 ¼

R R
f1ðy1Þ dO1 ¼ 1; if f1 is

properly normalized. Note that Eq. (12) has a
straightforward and intuitive interpretation: the
overall likelihood is simply the product of the
individual scattering probability at each detector
plane because the scatterings are independent of
each other. This way, we have effectively diag-
onalized the ‘‘error matrix’’. Notice that f1ðy1Þ and
fnðynÞ are missing because the incident angle
entering the detector and the final exit angle are
not related to the measured quantities.

The form of fiðyiÞ is approximately Gaussian [7]:

fiðyÞpexp �
y2

/y2S

� 	

with /y2i S
1=2 ¼ 21MeVðz=PvÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
ti=X0i

p
where z is

the particle’s charge, v is its velocity, X0i is the
radiation length of the ith material, and ti is the
path length traversed in the material, which
depends on the detector thickness and the incident
angle. This angle can be determined iteratively and
does not need to be known to high precision. We
note that the above Gaussian approximation
breaks down for large values of yi; due to the
non-Gaussian Moliere scattering distribution.

To calculate yi; we notice that the path between
each pair of hits is helical, although the entire
trajectory is not. For any value of P; one can
reconstruct the path segment between points ði �
1Þ and ðiÞ: The incident direction at detector
element ðiÞ is simply the tangent of this path at
point ðiÞ: Similarly, the exit direction can be
deduced by reconstructing the helical trajectory
between points ðiÞ and ði þ 1Þ and taking the
tangent at point ðiÞ: The angle between these two
directions gives yi: Therefore LðPÞ is fully calcul-
able, and hence can be maximized. Taking the

helical trajectory between points ðxi; yi; ziÞ and
ðxiþ1; yiþ1; ziþ1Þ for example, we denote the radius
of the helix as r and the azimuthal angle subtended
as Df: If 0oDfo2p; one then has

sin
1

2
Df

� 	
¼

d

2r
ð13Þ

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xiþ1Þ

2 þ ðyi � yiþ1Þ
2

q
and the B field is assumed to be along the z

direction. Eq. (13) has two solutions, one when
0oDfpp and other when poDfo2p:

Df1 ¼ 2sin�1 d

2r

� 	
ð14Þ

and

Df2 ¼ 2p� 2sin�1 d

2r

� 	
: ð15Þ

If we allow the possibility that Df > 2p; we then
have, in the general case,

Df ¼ 2sin�1 d

2r

� 	
þ 2np; n ¼ 0; 1; 2;y

or

Df ¼ 2p� 2sin�1 d

2r

� 	
þ 2np; n ¼ 0; 1; 2;y:

The non-negative integer n represents the number
of complete helical turns in this segment. The
allowed values of n depend on the detector
geometry. In many cases only n ¼ 0 is allowed,
which we assume is the case here to simplify the
following discussions. Therefore we have two
equations relating Df and r; Eqs. (14) and (15).

Inserting Eqs. (1) and (2) into Eq. (3), one has

r2 þ
ðDzÞ2

ðDfÞ2
¼

P2

C2
ð16Þ

where Dz ¼ ziþ1 � zi: Inserting the two choices for
Df into Eq. (16), one gets

P

Cd

� 	2

¼
r

d

� �2

þ
ðDz=dÞ2

ð2sin�1ðd=2rÞÞ2
ð17Þ

or

P

Cd

� 	2

¼
r

d

� �2

þ
ðDz=dÞ2

ð2p� 2sin�1ðd=2rÞÞ2
ð18Þ
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where C is a constant defined earlier. Fig. 2 shows
an example of P=Cd versus r=d from Eqs. (17) and
(18) for a specific case when DZ=d ¼ 5: The arrow
points to where the curves for the two equations
connect at Df ¼ p when r=d ¼ 0:5 and ðP=CdÞ2 ¼
1
4
þ ðDz=dÞ2=p2:
The value of r (and hence Df) can be calculated

in terms of P from Eq. (17) or (18). It is instructive
to look at Fig. 2 for the general behavior of these
two equations. We first note that r=d always
exceeds 0.5. The RHS of Eq. (17) is an increasing
function of r=d with a minimum value, m1 ¼
1
4
þ ðDz=dÞ2=p2 at r=d ¼ 0:5; Eq. (17) has a solu-

tion only if ðP=CdÞ2Xm1: The RHS of Eq. (18) is a
little more complicated. Starting from r=d ¼ 0:5; it
is a decreasing function of r=d until it reaches its
minimum value of m2; then it increases mono-
tonically. As a result, for ðP=CdÞ2om2 there is no
solution for r in either case, therefore there is a
lower cut-off on P; at P ¼ Cd

ffiffiffiffiffiffi
m2

p
; and Eq. (18)

has one solution while Eq. (17) has no solution at
this value of P: For m1 > ðP=CdÞ2 > m2; Eq. (18)
has two solutions while Eq. (17) has no solution.
For ðP=CdÞ2Xm1; each of Eqs. (17) and (18) has
one solution. To summarize, there are a total of
two solutions for ðP=CdÞ2 > m2; and the two
solutions degenerate into one at ðP=CdÞ2 ¼ m2:
There is no solution for ðP=CdÞ2om2: Each
solution of r and Df corresponds to two possibi-
lities of the helical portion between the two points,
one going clockwise and one going counter-clock-
wise. For a known B field and particle charge, only
one possibility remains. Hence we have shown that
yi can be derived in terms of P; xi�1; yi�1;
zi�1; xi; yi; zi; xiþ1; yiþ1 and ziþ1:

As we have seen, there are two solutions for r

and Df when ðP=CdÞ2 > m2: Consequently, one
needs to examine both solutions and exclude the
incompatible ones, for which the trajectory will
have additional crossings at the detector between
points i and ði þ 1Þ: When both segments are
compatible, they both have to be considered. As a
result, Eq. (12) needs to be summed over all
allowed combinations of segments:

LðPÞ ¼
XNc

j¼1

Yn�1

i¼2

fiðy
j
iÞ
Yn�1

i¼1

Q
j
i

( )
ð19Þ

where the summation j goes over all allowed
segment combinations. In practice, this sum is
usually dominated by one particular combination
and Eq. (19) reduces to Eq. (12).

The feature of a cut-off momentum reflects the
fact that P cannot be arbitrarily low given the
measured points. Since each pair of adjacent
points gives one such cut-off, when considering
all the n points, the maximum of these ðn � 1Þ cut-
off values is the overall cut-off in P; which we
denote as Pc: As a result, Eq. (19) is defined only
for PXPc; and L is taken to be zero for PoPc:

When including the effect of energy loss in the
detector, L takes the following form:

LðPÞ ¼
Z P

0

dP1

Z P1

0

dP2y

Z Pn�2

0

dPn�1hðP;P1Þ

�
XNc

j¼1

Yn�1

i¼2

giðy
j
i ;Pi�1;PiÞ

Yn�1

i¼1

Q
j
i

( )
ð20Þ

Equation 17

Equation 18

r/d

P
/(

C
d)

Fig. 2. An example of P=Cd versus r=d from Eqs. (17) and (18),

for a specific case when DZ=d ¼ 5; plotted for r=do1:5; a value

arbitrarily chosen. The two curves monotonically increase to

infinity beyond r=d ¼ 1:5: These two equations correspond to

Dfpp and > p; respectively. The arrow points to where the two

curves connect at Df ¼ p when r=d ¼ 0:5 and ðP=CdÞ2 ¼
1
4
þ ðDz=dÞ2=p2:
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where Pi ði ¼ 1;y; ðn � 1ÞÞ is the particle’s mo-
mentum between hits ðiÞ and ði þ 1Þ: We define
hðP;P1Þ dP1 to be the probability that the particle
with initial momentum P has final momentum
P1 within dP1 after going through the first de-
tector element. For i ¼ 2;y; ðn � 1Þ;
giðy

j
i ;Pa;PbÞ dO dPb is the probability of the

particle with initial momentum Pa being scattered
into the final solid angle space and momentum
intervals with final momentum Pb in the ith
detector element. One can calculate yj

i the same
way as before, except that each segment now has a
different momentum value.

If one also takes into account the detector
spatial resolution, Eq. (20) should be replaced by

LðPÞ ¼
Z

y

Z
dx0

1 dy0
1ydx0

n dy0
n

� L0ðP;x0
1; y

0
1yx0

n; y
0
nÞ
Yn

i¼1

riðxi; yi;x
0
i; y

0
iÞ

ð21Þ

where ðxi; yiÞ denote the measured coordinates and
ðx0

i; y
0
iÞ denote the actual coordinates. The differ-

ence between them represent the measurement
error and is characterized by the resolution
function riðxi; yi;x0

i; y
0
iÞ: The function ri is the

probability density function that measurement
ðxi; yiÞ corresponds to actual coordinates ðx0

i; y
0
iÞ:

The expression L0ðP;x0
1; y

0
1yx0

n; y
0
nÞ is the same as

LðPÞ as defined in Eq. (20), except that it is
evaluated for the actual coordinates.

To summarize, Eq. (21) is the rigorous form of
the likelihood of P; when random processes
include multiple scattering, energy loss and detec-
tor spatial resolution. It may be too complicated
for practical use, and we next develop its
approximate forms to be used in actual calcula-
tions.

3.2. The approximate forms of the likelihood

function

Both multiple scattering and spatial resolution
introduce deviations in the positions with respect
to those on a perfect helix. The contribution from
multiple scattering is on the order of l/y2i S

1=2;
where l is the typical helix length between two hits.

In many cases this contribution to the deviation is
much larger than that due to the spatial resolution
and the latter can be neglected. In this case,
Eq. (21) reduces to Eq. (20). For example, in this
experiment [1], the deviation from multiple scatter-
ing is B0:3 cm; and the spatial resolution is
0:02 cm for the transverse coordinates and
0:15 cm for the longitudinal coordinate, and we
find that neglecting the spatial resolution in the
likelihood formulae (while keeping the effect of
spatial resolution in the Monte Carlo simulation)
gives good results in determining the momentum,
as will be shown in Section 3.3.

Eq. (20) can be further simplified by assuming
an average energy loss at each detector. One then
has

LðPÞE
XNc

j¼1

Yn�1

i¼2

fiðy
j
iðPi�1;PiÞÞ

Yn�1

i¼1

Q
j
i

( )
ð22Þ

in which we explicitly write down yi as a function
of Pi�1 and Pi: Instead of being integration
variables, P1yPn�1 are now determined from P:
They are given by

Pi ¼ P �
Xi

j¼1

tjCej ð23Þ

where Cej is the average energy loss per unit length
for the jth detector element, and tj is the path
length traversed through the jth detector element.

The approximation in Eq. (23) reduces the
likelihood with respect to the maximum value
determined for a fit that includes the effects of
energy loss. It also introduces an uncertainty in the
energy on the order of the dispersion in the energy
loss in the detector. This approximation compen-
sates for the average energy loss, whereas the
actual energy loss distribution falls off rapidly on
the low-energy side and has longer high-energy
tails. As a result, it introduces low-energy tails in
the resolution function. No significant high-energy
tails are induced which is crucial for this experi-
ment [1].

We stated earlier that calculations of the Q0s are,
in general, tedious. Fortunately, in many cases
they vary much less with P compared with other
terms such that they can be taken as constants and

Tingjun. Liu, William. Molzon / Nuclear Instruments and Methods in Physics Research A 496 (2003) 172–182178



dropped. Eq. (22) then becomes

LðPÞE
XNc

j¼1

Yn�1

i¼2

fiðy
j
iðPi�1;PiÞÞ

( )
: ð24Þ

Eq. (24) is much simpler to use compared with
Eq. (21). In the next section we will show that it
also has good accuracy.

3.3. Accuracy and performance

The uncertainty in the determination of P can be
estimated by how fast L falls off when P deviates
from Pm; the value of P when L is maximal. If the
likelihood curve is near Gaussian, the uncertainty
can be defined by fitting LðPÞ to a Gaussian
function around P ¼ Pm: In general, a measure of
the quality of the fit is the shape of LðPÞ; and a
selection criteria based on this shape can be used
to eliminate backgrounds. This selection will
depend on the details of the backgrounds one is
trying to eliminate.1 For example, in the case of
experiment [1] where most of the unwanted back-
grounds come from high-energy tails in the
resolution function exceeding B1 MeV=c;
one can minimize backgrounds by requiring that
the likelihood value fall by more than some
arbitrary factor when DPB1 MeV=c; where DP ¼
Pm � P:

In principle, the shape of LðPÞ (as opposed to its
absolute value) alone dictates the uncertainty in
the determination of P: However, in practice, we
also require a minimum value for LðPmÞ to ensure
a reliable measurement. This requirement will
reduce the probability of finding the wrong
trajectory when the detector signals are contami-
nated with noise signals. In addition to deriving
Pm and the shape of LðPÞ; the proposed fitting
method evaluates the individual scattering angle,
yi; at each detector crossing for a given momen-
tum. One can additionally require that the values
of yi evaluated at P ¼ Pm not exceed some

maximum, although this is highly correlated with
requiring that LðPmÞ exceed some value. This
requirement on yi is necessary when the form of
fiðyiÞ is not well known for large values of yi:

Eq. (24) is an approximate form for L; but it
gives good results. It has been used in a Monte
Carlo simulation of this experiment [1] for
momentum determination by maximizing the
value of L as calculated by the above equation.
The simulation includes the full effects of multiple
scattering and energy straggling. Spatial resolution
of 0:02 cm for the transverse coordinates and
0:15 cm for the longitudinal coordinate is also
included in the simulation. When the momentum
determined by Eq. (24) is compared with the actual
momentum entering the detector (around
105 MeV=c), a resolution of sB150 keV=c is
achieved.

Fig. 3 shows an example of the shape of L as a
function of P for a typical simulation event. Again,
L is calculated using Eq. (24). The curve peaks at
about 104:73 MeV=c; while the particle’s actual
momentum into the detector is 104:85 MeV=c:
One sees that LðPÞ is narrow, with a FWHM of
B200 keV=c: The overall cut-off momentum is
Pc ¼ 100:3 MeV=c:

4. Conclusions

In conclusion, we have devised a likelihood
algorithm to determine charged particle momenta
and assess their uncertainties by using position
measurements in a magnetic field. Both the
rigorous and approximate forms are presented.
Eq. (21) is the rigorous form when random
processes include non-Gaussian multiple scatter-
ing, energy loss and detector spatial resolution.

This method is particularly simple and useful
when multiple scattering is the dominant source of
uncertainties. Because the scatterings are indepen-
dent of each other, the likelihood is simply the
product of the individual scattering probability at
each detector plane, modified by some Jacobian
terms. The calculated scattering angles at each
scattering point have very sensitive dependence on
P; which makes the likelihood method effective in
the momentum determination.

1 In general, if the objective is to minimize a cost function

arising from the incorrect determination of P; the cost function
will depend on the shape of LðPÞ [8], and the most probable

value of P may not be the optimal estimate depending on the

form of the cost function. However, we ignore this subtlety in

this paper and use Pm as the estimate of P:
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The likelihood formulae can be simplified under
various conditions. If the detector’s spatial resolu-
tion contributes little to the deviations from a
perfect helical trajectory, the spatial resolution can
be safely ignored; if the dispersion in the energy
loss in the detector is much smaller than the
required energy resolution, the particle’s energy
loss in each detector can then be approximated
by the calculated mean energy loss; if the
dependence of Jacobian terms in the scattering
probability do not depend strongly on P; they
can be dropped. When all of the above condi-
tions apply, L can be approximated by Eq. (24),
which is relatively simple to implement without
sacrificing accuracy in the momentum measure-
ment.
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Appendix A. More discussions on the Q’s

We here examine the Q’s as defined in Eq. (8) in
more detail, mainly for mathematical curiosity.
We calculate its value for the segment between
points ðiÞ and ði þ 1Þ by differentiating Eqs. (13)

and (16). The calculations are straightforward
although tedious, and one of the authors has
derived the following expression:

Q ¼
tan y sin y

2r3ðDfÞ3cosðDf=2Þ þ 2ðDzÞ2d

�����
� Dz Dfsy þ

2ðDzÞ2

d
�

2Dz

d
r Df cos

Df
2

� 	
sx

� 	����
ðA:1Þ

where the symbols used in Eqs. (13)–(18) are
carried over, and sx and sy are the same as defined
in Eq. (6). They refer to detector element ði þ 1Þ
and the coordinates are conveniently chosen such
that z is along the B field, and the line joining
points ðiÞ and ði þ 1Þ is in the xz plane. The angle
between this line and the z-axis is denoted by y;
and tan y ¼ d=Dz: Note that Q has different values
for the two solutions of the trajectory. In general,
Q has a complicated dependence on P through its
dependence on Df and r: We examine two special
cases below.

In the limit when Df-0; which happens when
d=r ¼ jqjBd=cP>51 such that the helical portion
is approximately a straight line, r Df approaches
d; and Eq. (A.1) reduces to

Q ¼
sin2 y

d2
ðcos y� sx sin yÞ ðA:2Þ

as can be readily verified when taking all
trajectories to be straight lines. In this case, Q

Fig. 3. An example of the likelihood L (left) and log10ðLÞ (right) versus momentum P from a Monte Carlo generated event based on

Eq. (24). Here L peaks at 104:73 MeV=c; while the particle’s actual momentum entering the detector is 104:85 MeV=c:
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has no dependence on P and hence can be safely
dropped.

Next we examine a striking feature of Q; that is
it diverges when g � 2r3ðDfÞ3cosðDf=2Þ þ
2ðDzÞ2d ¼ 0: Obviously Df > p when that hap-
pens. Furthermore, we show that this happens at
the cut-off momentum when r ¼ rm and the RHS
of Eq. (18) reaches its minimum value of m2: We
remind ourselves that P in LðPÞ is bounded from
below by Pc; the overall cut-off momentum, which
is the maximum of the n � 1 cut-off momenta
derived for each pair of adjacent hits. Without loss
of generality, we assume that Pc is defined by the
segment joining points ðiÞ and ði þ 1Þ:Denoting the
RHS of Eq. (18) as

f ðrÞ �
r

d

� �2

þ
ðDz=dÞ2

ð2p� 2sin�1ðd=2rÞÞ2
;

one can calculate its derivative as

f 0ðrÞ ¼
g

r2d2ðDfÞ3 cosðDf=2Þ
: ðA:3Þ

Since f 0ðrmÞ ¼ 0; one has g ¼ 0 at r ¼ rm or P ¼ Pc

such that Q diverges.
Probability conservation requires

R
LðPÞ dP to

converge. Because of the divergence of Q; this may
present a problem in Eq. (22). To check this, we
examine the segment that defines Pc and require
the convergence of

R Pcþe
Pc

Q dP for the two solu-
tions for the trajectory, where e is small and
positive.2 To check this, we Taylor-expand f ðrÞ
around rm: It is easy to show that its second
derivative is positive, i.e. f 00ðrmÞ > 0; so one has
f ðrÞEðPc=CdÞ2 þ 1

2
f 00ðrmÞðr � rmÞ

2 and

f 0ðrÞEf 00ðrmÞðr � rmÞ: ðA:4Þ

Eq. (18) becomes P � PcEðC2d2=4PcÞf 00ðrmÞðr �
rmÞ

2 and the two solutions of r become

r � rmE7
2

Cd

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc

f 00ðrmÞ

s
ðP � PcÞ

1=2 ðA:5Þ

From Eqs. (A.3)–(A.5), one has

gE7
2

Cd
r2d2ðDfÞ3 cos

Df
2

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pcf 00ðrmÞ

p
ðP � PcÞ

1=2: ðA:6Þ

Eqs. (A.1) and (A.6) give the leading term in Q

when P approaches Pc:

QEcPðP � PcÞ
�1=2 ðA:7Þ

where the constant cP is the absolute value of the
expression

tan y sin y Cd

2r2d2ðDfÞ3 cosðDf=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc f 00ðrmÞ

p
� Dz Df sy þ

2ðDzÞ2

d
�

2Dz

d
r Df cos

Df
2

� 	
sx

� 	

evaluated at P ¼ Pc: This cP is the same for the
two solutions of rorm and r > rm: For either
solution, we have

R Pcþe
Pc

Q dP ¼ 2cP

ffiffi
e

p
and it does

converge.
In general, the inclusion of the Q’s will change

the shape of the likelihood function. The change is
usually small except at P ¼ Pc where Q ap-
proaches infinity. This surprising feature would
make Pc the most probable momentum, regardless
of the quality of the helix fit. In practice, this
problem is resolved because the objective is to
estimate P within some tolerance e; such that we
need to compare the integrals of

R Pcþe
Pc

L dp andR Pmþð1=2Þe
Pm�ð1=2Þe L dp: Usually the former is negligible
compared with the latter, such that P ¼ Pc is not a
viable choice. Furthermore, when P is away from
Pc; the Q’s usually vary much less with P

compared with the dependence of scattering angles
on P: As a result, the Q’s can be dropped, and the
approximation is valid.

Lastly, we point out that the divergence of L

caused by that of Q at P ¼ Pc will disappear if the
detector spatial resolution or energy loss disper-
sion in the detector is taken into account in
formulating L; such as in Eqs. (20) and (21).
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