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1) Introduction 

1.1) TWIST: Physics Purposes and Goals 
TWIST stands for the TRIUMF Weak Interaction Symmetry Test.  The TWIST 

experiment is located in Vancouver, British Columbia at the TRIUMF cyclotron 
facility.  It is an experiment in particle physics, designed to test the validity of the 
standard model.   

 
TWIST is interested in muon decay, which is an interaction governed by the weak 

nuclear force.  The standard model predicts four parameters, called the Michel 
parameters, which describe this decay.  TWIST's goal is to measure the Michel 
parameters to an accuracy of at least three times greater than previously achieved.  
Measuring them to a greater precision will allow definitive conclusions to be made 
about discrepancies (if any) between what the standard model predicts, and what is 
actually observed in nature.    

 
It is known that the standard model is not a complete theory.  Several theories 

have been developed as extensions to the standard model.  By examining the 
discrepancies between the standard model and reality with respect to weak 
interactions, TWIST will allow certain of these theories to be ruled out. 

1.2) Work Term Goals 
 

The TWIST experiment relies on its particle detector, as well as a sophisticated 
simulation of this detector.  The current detector simulation, which began 
development in 1998, was built using a physics simulation toolkit called GEANT3. 
 

GEANT3, developed at CERN in the 1970’s, provides the basic tools needed for 
simulating a particle physics experiment.  A more recent version of the toolkit, 
GEANT4, began development in 1994.    
 
 It is proposed that designing a new TWIST simulation using GEANT4 may 
improve its accuracy.  The new version of the simulation, called G4twist, has been in 
production since 2001, but as of March of 2004 it is still missing a portion of its 
functionality.  The missing portion is the ability to produce output in a form that is 
equivalent to the real detector data.  This process is commonly referred to as 
digitization, and it is an important step in simulating the TWIST detector; without this 
feature, the simulation data cannot be compared directly to that obtained from the 
actual detector.  Thus, the goal of this work term is to complete the digitization of the 
new TWIST simulation. 
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2) TWIST: The Detector 
 
Figure 1: TWIST detector 

 
 

2.1) Introduction to the TWIST detector 
 

A beam of positively charged muons is sent to the TWIST detector (Figure 1) 
through a beamline provided by TRIUMF's cyclotron.  The muon beam enters the 
detector, which is enclosed in a strong magnetic field generated by a large bore 
superconducting magnet.  The muon follows a helical path through the detector, due 
to the presence of the field.  An individual muon is stopped in the aluminum target, 
located at the center of the detector.  Once the muon has stopped, it decays with a 
mean lifetime of 2.2 microseconds, producing a neutrino, anti-neutrino and a 
positron (Figure 2) [1].  
 

Figure 2: A muon decay event, showing decay positron and neutrinos 
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The positron that is produced from the decay event also follows a spiral path 
throughout the detector, and this path is carefully tracked.  By analyzing the 
trajectory of the decay positron, the momentum and angular distributions of the 
decay event can be determined.  From these distributions, the Michel decay 
parameters can be calculated. 
 

The trajectory of each charged particle is measured by the 56 sense planes that are 
positioned within the cylindrical magnet.  Each sense plane consists of either drift 
chambers (DC's) or proportional chambers (PC's).   The data recorded from each 
plane can only resolve one direction of the trajectory, depending on the plane's 
orientation.  Thus, the planes are positioned in pairs throughout the detector, 
resolving two orthogonal directions at each position along the detector.    There are  
22 pairs of DC planes and 12 pairs of PC planes in the detector, symmetrically 
divided by the target, which lies at the center of the detector (Figure 3).  
 

Figure 3: Detector side view 

 
 
 

 

2.2) Triggering an Event - The Scintillator 
The TWIST data depends on the timing of a particle as it passes through the 

detector.  Thus, it is essential to have a reference time that will mark the start of an 
event.  The reference time is defined by a muon traversing a thin scintillator, which 
is located at the upstream end of the detector stack (closest to the entrance of the 



 7

beamline).  The electronics are triggered by the first muon to enter the scintillator, 
and every time recorded thereafter is in reference to the initial trigger time.   

 

2.3) Drift Chambers and Proportional Chambers: 
The DC and PC's, along with the muon scintillator, are the parts of the detector 

which are sensitive to the observed particles.  They are designed to allow position 
and time resolution of a particle's trajectory. 
The DC and PC planes consist of equally spaced sense wires, each maintained at a 
high voltage.  There are 80 sense wires in each DC plane, separated by 4mm, and 
160 sense wires in each PC plane, separated by 2mm.  For the sake of analysis, the 
PC and DC planes are logically divided into cells.  A cell is a long trapezoidal 
volume containing one wire (Figure 4). 

 
Figure 4: DC Cell and plane 

 
 
 

The chambers are filled with a specific gas, and a high voltage is applied to each 
sense wire.  As a charged particle passes through the chambers, it causes some gas 
molecules to ionize.  Groups of electrons from the ionized molecules form, and are 
called clusters.  The charged clusters, due to their small kinetic energy upon 
ionization, do not leave the chamber with the incident particle.  Instead, the clusters 
drift towards the nearest sense wire, under the influence of the strong electric field.  
The sense wires are each attached to electronic devices, time to digital converters 
(or TDC’s), which allow the time required for the clusters to reach the wires (their 
drift times) to be recorded.  Using a map of the electric field in each cell, as well as 
precise timing information of the incident particle, the drift times of the clusters can 
be resolved into the position where the ionization occurred - a point in the trajectory 
of the particle of interest. 
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The DC and PC chambers, although their designs are similar, are used for two 
different purposes.  To accomplish their specific tasks, two different gases are used, 
as well as differing electronics.  The gas in the proportional chambers (CF4 – 
Carbon Tetrafluoride) is called a “fast gas” when compared to the gas in the drift 
chambers (DME - Dimethyl Ether).  Electron clusters take less time to drift to the 
sense wires in CF4 than they would in DME.  With a smaller drift time 
(approximately 20ns in PC cells compared to 200ns in DC cells), the particle's time 
of flight can be resolved with more precision. The time of flight, or the time since 
event trigger, is important because it is useful to determine exactly when the muon 
and positron traverse the detector.  A slower gas is used in the DC chambers, since 
it results in better position resolution.  Thus, the DC's obtain precise positions, and 
the PC's obtain precise timing information. 
 

Another feature of the proportional chambers is their ability to measure the energy 
loss of the particle.  Because the number of electrons in the cluster is proportional to 
the amount of energy lost by the ionizing particle, the amplitude of the signal allows 
measurement of that particle's energy deposit.  In order to measure the pulse height, 
extra electronic devices, analogue to digital converters (ADC's), are connected to 
the PC's that neighbor the target.  The energy deposit in those cells can then be 
measured with the ADC's, and be used as a tool for analysis. 

  

2.4) Digital Converters: TDC's and ADC's 
The TDC’s are responsible for converting recorded times to digital signals.  The 

type of TDC used by TWIST accepts one common ‘stop’ time, and up to 8 ‘start’ 
times for each channel.  The stop time is what marks the end of a time interval.  The 
larger the start time, the further away from the stop time it occurred.  The stop time 
is determined by the trigger particle in the scintillator, and the start times are 
determined by signals on the wire.  Another feature of the TDC’s is their ability to 
distinguish leading edge and trailing edge times.  These edges are caused by several 
groups of electrons which drift to the wire from different distances.  The width of a 
TDC signal is determined by the time difference between the leading and trailing 
edges.  If two or more clusters reach the sense wire at approximately the same time, 
an overlap of the signals occurs and they are combined.  The TDC takes the first 
leading edge and the last trailing edge to be the width of this large signal.   
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3) Simulating TWIST 
 

3.1) Why Simulate TWIST? 
The nature of the experiment is to measure the differences, if any, between theory 

and “real physics”.  Therefore, it must be clear that the differences observed are in 
fact due to a divergence of theory from reality, and are in no part due to deficiencies 
in the experimental setup or method.   

 
The spiral path of the decay positrons produced from this reaction is what holds 

the key to measuring the Michel decay parameters. The TWIST detector is not 100% 
efficient at tracking the decay positrons.  However, the detector response has been 
measured very accurately, and efficiency trends are seen for varied angles and 
energies of the particle of interest.  It is hoped to obtain a digital duplicate of the 
TWIST detector by creating a simulation that incorporates these trends, or 
“imperfections”.  Since each part of the detector is to be exactly replicated, the 
response of the simulation would ideally be identical to that of the detector.  The 
intentional difference between the detector and the simulation will be how the muon 
decay occurs.  In the simulation, muon decay will be based upon the predictions of 
the standard model.  In the detector, this may or may not be the case. 
 

Thus, the results of the simulation, when compared to real data, will show the true 
discrepancies between the standard model and reality.  In other words, these 
comparisons will be free of any outside influences caused by the detector response, 
since these influences should be present in both the simulation and the detector. 

 

3.2) Current Simulation 
The current version of the TWIST detector simulation has been developed over 

the course of the past 6 years, with contributions from many collaborators.  The 
simulation was constructed using a well-known physics simulation toolkit, GEANT3 
(abbr. G3).    Written in FORTRAN, G3 allows users to add their own FORTRAN 
routines to the basic structure already provided, customizing it for their experiment. 
 

In the simulation, G3 is responsible for sending pre-defined particles through 
TWIST's geometry.  G3 provides the essential physical processes that occur in the 
TWIST detector, such as ionization, particle scattering, and electromagnetic effects. 
 

There are some factors that are common to every simulation developed using G3.  
Such factors include the stepping procedure, the particles and physics processes 
available, and the general organization of the simulation.  Each simulation may have 
a number of primary particles that comprise an event.   An event is defined by the 
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passage of these particles through the detector.  Several events may be generated to 
form a run.  When a run is completed, the simulation terminates.   

  
The TWIST simulation also has many features that are specific to the experiment.  

The detector is divided into several different volumes, which are carefully positioned 
to form the detector geometry.  Each PC and DC cell is considered a separate volume, 
and the group of them are arranged to form the PC and DC planes.  G3 sends a muon 
through the detector, updating the particle's current position, time, energy, and 
momentum, at each step.  This procedure, carried out for all primary and secondary 
particles produced in the simulation, is called tracking or stepping.   
 

When a particle enters a sensitive part of the detector, every step that it makes 
within that volume is called a hit.  Hits can occur in the scintillator, as well as the PC 
and DC cells.  A special procedure is carried out when a hit is made, called hits 
collection,that allows certain attributes of the particle's step to be recorded for later 
processing.  TWIST is interested in information collected for each cell entered (for 
example, the minimum drift time in that cell), and so a hit record is stored once for 
every cell, not once for every step.  To distinguish between these two types of hits, 
the record that is kept for a cell will be called a cell-hit, which is constructed from 
several individual step-hits (or simply hits).   
 

After an event has completed, the hits information is processed in a way that will 
produce a data file of the same general form and content as that produced by the real 
TWIST detector.   This process is called digitization. 
 

TWIST often generates over 10 000 events per run.  Each event has specific 
attributes which are identical throughout the run, such as the number of muons 
generated per unit area, or the presence and strength of the magnetic field. 
 

The current version of the simulation is still tested and debugged on a continuous 
basis.  The simulation describes TWIST well, and is useful for systematic studies and 
comparisons with real data. 

3.3) Future of the TWIST simulation: using a new toolkit 
 

Efforts to improve the current simulation are still made; a model that better 
describes the TWIST detector results in smaller systematic uncertainties when 
simulation output and real data are compared. 

 
One of the efforts made recently to improve the simulation has been to upgrade to 

the newest simulation toolkit, GEANT4 (abbr. G4).  The goal of this endeavor is to 
determine how well physics processes are modeled by G4 when compared to G3, and 
if there are any significant advantages to moving to G4 permanently. 
 

The geometry, physics processes, particles, and electromagnetic field are all 
defined according to TWIST's requirements, in the basis of standard G4 program 
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design.  Some tests have been done to determine the differences between G3 and G4 
in terms of available physics processes, such as electromagnetic interactions.  
However, the simulation is not yet complete, and lacks many features available in 
G3twist. 

 

3.4) G3twist vs. G4twist 
 

Advantages of G4twist 
G4twist has some anticipated advantages over G3twist.  The main advantages are 

its improved physics processes, extendibility, and memory management.   
 

Physics Processes: 
G4 was developed with the goal of improving the available physics processes.  

Improvements have been made, especially for high-energy processes, which better 
simulate particle interaction.  In particular, the claim is that the electromagnetic 
processes for muons and electrons in G4 are improvements of those in G3 [3].  This 
is important in G4twist, since the helical path of the particles in a magnetic field 
greatly depends on how electromagnetic interactions are simulated.   In particular, 
G4 now employs a more complete model for multiple scattering processes [6].  
Multiple scattering occurs in G4twist when a muon interacts with detector materials 
(such as the Mylar walls of the chambers).  It is affected by the cloud of electrons 
surrounding a nucleus; an interaction which may change its trajectory and cause 
energy loss.   
 

Extendibility: 
G4 is written in C++, an object oriented language.  This is an improvement over 

G3’s base in FORTRAN, which is a procedural language.  Because of its object 
oriented design, G4 provides the ability to extend its capabilities.  For example, it is 
a relatively straightforward task to define new shapes, particles, and physics 
processes which are not currently provided by G4 [5].  This is not the case with G3.  
In G3twist, the addition of new physics processes is a lengthy task, requiring the 
developer to understand many areas of the simulation.  For example, the addition of 
a process that models ion and electron clustering in G3twist required the 
modification of several existing tracking routines, as well as associated common 
blocks.   
The same process will need to be defined in G4twist, but G4 provides a much 
simpler method for incorporating it into the framework of the simulation.  One must 
only register the newly defined process with the GEANT4 Process Manager, and no 
other changes need to be made to the existing code.  All the tracking procedures 
will be aware of the process, and it will use the necessary particles without any 
intervention from the developer. 

 
Memory Management: 
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In the development of G3 at CERN, it was immediately apparent that some form 
of dynamic memory storage would be needed for this toolkit [4].  The memory 
storage had to be efficient and flexible, able to store varying amounts of 
information for each run without the need for editing and recompiling the source 
code.  There is no such type of memory storage available in FORTRAN, so CERN 
developed their own memory tool called ZEBRA.  ZEBRA allows users to create 
dynamic memory banks, used for the storage and retrieval of data at different 
points in the simulation.   
 

A more sophisticated language, C++ has built-in dynamic memory allocation 
abilities.  Thus, there is no need for any external memory tools in G4.  This is a 
great advantage for G4twist.  The ZEBRA banks are difficult to understand and 
maintain unless one is very familiar with their structure.  They require several 
operations to be carried out directly within the user's code (initialization, for 
example).  ZEBRA does not provide the level of abstraction that is available with 
C++ memory allocation.  A developer of G4twist does not need to understand the 
workings of C++'s memory storage, and can easily use it in an effective way.  In 
fact, much of the memory requirements are handled through the use of classes and 
objects, the basis of C++ programming. 

 
 

Disadvantages of G4twist 
For all these improvements, G4twist is still lacking in reliability and functionality. 

 
Reliability: 

G4twist is quite new, relative to its predecessor, G3twist.  A very significant 
amount of work has gone into testing and debugging G3twist over the past 6 years.  
In comparison, very little testing has be done on G4twist, and is not yet known to be 
reliable. 

 
Functionality: 

G4twist currently lacks a clustering process.  However, as noted above, this 
process can be relatively easily incorporated into the simulation. 
Most importantly, as of March of 2004, G4twist does not include hits collection and 
digitization.  Without these two areas, the simulation can not be compared to data, 
making it useless as a production simulation for TWIST. 

   
 

3.5) The Task 
 

The next step for improving G4twist is to implement hits collection and 
digitization procedures in the simulation.   
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There are two general choices, in terms of design, for the digitization of G4twist.  
The digitization scheme could be entirely rewritten in C++, making use of the various 
tools available in G4 specific to this task.  Another possibility is to use the digitization 
scheme already in place in the current G3 simulation.  This last option involves 
‘wrapping’ parts of the FORTRAN code into C++ classes – that is, allowing a method 
in G4twist to pass required parameters to the G3twist subroutines.  The digitization 
will then be carried out exactly as it is done in the current simulation. 
 

There are obvious advantages to reusing the existing code.  Years of work have 
gone into developing G3twist, and all parts of it have been carefully tested and 
debugged.  Therefore, it is known that the digitization methods will function 
correctly, as long as they are passed the correct parameters from G4.  In this way, a 
large part of the testing and debugging cycle can be avoided almost entirely.   
 

There are no immediately obvious disadvantages to this method.  Wrapping 
FORTRAN code is, in general, much simpler and less time consuming than 
translating it.  This is especially true when considering that the code has to be 
translated not only from FORTRAN to C++, but also (and requiring the most 
thought) from GEANT3 to GEANT4.  The two toolkits employ very different 
organizational principles, and thus the directly translated code would not suffice for a 
G4 simulation.   
 

Hence, the preliminary task is to investigate the G3twist digitization scheme, 
decide what code is to be reused, and how that code is to fit into G4twist.   
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4) G3twist Digitization Investigation 
 

4.1) Summary of G3twist Digitization: 
 
A simplified flow diagram for a typical GEANT3 simulation can be seen in 

Figure 5 [2].  The red boxes indicate the areas that contain elements essential to the 
digitization of the simulation, and are expanded upon in Figure 6. 

 
The subroutine GUSTEP allows the user to assert control over a single step in the 

current track.  This routine is often used for storing hits information in the ZEBRA 
memory bank, JHITS.  When an event has completed, and all hits have been stored, 
the routine GUDIGI is called, which carries out the processing of the hits information 
(for example, checks for overlapping signals and combines them), and stores the 
resulting data in the JDIGI bank.  Finally, at the end of a run, GUOUT outputs the 
contents of JDIGI into a specific format, identical to that of the TWIST detector data 
files. 
 
The specific digitization scheme for G3twist is mapped in Figure 6. 
 

Storing Hits 
 

At each step, GUSTEP calls ‘store_hit_ch’ and ‘store_hit_sc’ to save hits 
information for the PC and DC cells and the muon scintillator, respectively.  
These routines extract information about the step, such as position and time of 
flight, from variables in the tracking common block gctrack.  

   
For PC and DC volumes, the drift time of the ion cluster is calculated 

based on the distance from the sense wire inside the current cell (‘dtt_gettime’).  
This is accomplished by accessing a two-dimensional array that contains the 
calculated drift times for each y-z position within a cell.  This array is filled from 
existing data files called isochrone maps.  These maps are created by a separate 
program, which calculates drift times based on material properties of the gas, and 
the electric field shape in a cell. 
After the drift times are retrieved, the trailing edge times for the cluster are 
calculated (‘sort_hits_ch’).   
 

For the scintillator, the first muon to enter the volume resets the time of 
flight for each other particle present, and thus is the trigger for the event.   
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The above hits information is stored in an array called ‘hits’.  Both 
routines then call GEANT3’s ‘gsahit’, which commits the ‘hits’ array to the 
ZEBRA bank JHITS.  

 
Figure 5: Simplified GEANT3 Program Flow 

 
 

MAIN 

UGINIT 

GRUN 

UGLAST 

GUKINE 

GUSTEP 

GUTRAK 

GUDIGI 

GUTREV 

GUOUT

- User routine to call all other 
subroutines 
 
- Initialization of G3 variables, ZEBRA 
data structures (particles, materials), 
geometry setup and data structures. 
Preparation of energy loss and cross-
section tables for all materials.   
 
- loops over all events 
 
 
 
- user inputs initial kinematics for 
primary particles 
 
 
- loops over all tracks 
 
 
- Controls tracking for a specific particle 
 
 
- recording of hits on sensitive detectors 
into ZEBRA data structures 
 
 
- Computes digitization of the event 
(processes hits for suitable output) 
records in a data structure 
 
- outputs the current event, including 
digitization 
 
 
- termination of all processes 
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Figure 6: G3twist Digitization Scheme 

 

Processing Digitization 
 

At the end of an event, GUDIGI calls the ‘process_*_digitization’ routines 
(where * is sc, pc, or dc).    These routines are responsible for simulating the 
electronics in greater detail.  For example, hits are checked for time overlap 
(‘resolve_tdc_signals’) before being sent to the TDC (‘add_to_tdc’).   

 
These three routines must retrieve data from both the JHITS (using 

‘gfhits’) and JSET (using ‘glook’) banks in order to process it for digitization.  

store_hit_ch GUSTEP 

store_hit_sc 

GUDIGI process_sc_digitization

process_pc_digitization

process_dc_digitization

simulate_1877_tdc 

gfhits

resolve_adc_signals ( n )

resolve_tdc_signals ( n ) 

Control for each event: 

gsahit

add_to_tdc

 

 

Indicates a reference to 
ZEBRA banks 
 
 
 
Indicates a non-standard 
subroutine, created by 
TWIST 

glook

dtt_gettime 

sort_ch_hits 

Control for each step: 
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 The JHITS bank is filled by the ‘store_hit_ch’ and ‘store_hit_sc’ routines 
described above.  The JSET bank is a record of the sensitive geometry structure, 
including hierarchies of volumes and their identification numbers.  This 
information is defined much earlier in the program flow, at the initialization stage, 
and greatly depends on the specific detector geometry. 
 

After retrieving hits and volume information, the digitization routines fill 
arrays that are stored for access by ‘simulate_1877_tdc’.   This crucial subroutine 
is responsible for converting leading edge and trailing edge times of the ion 
cluster, as well as plane and cell numbers, into the bit pattern generated by the 
LeCroy 1877 TDC’s used by the TWIST detector.  

Output 
Figure 7 shows how the digitization data is outputted to a binary file. 

 
After all of the digitization processing is complete, GUOUT is called.  

This routine is responsible for storing the processed information in memory 
banks.  G3twist makes use of a type of memory storage that simulates the data 
tapes used by the detector, called YBOS.  There are several YBOS banks that are 
created by GUOUT, including extra banks found only in simulation data.  The 
main bank is named FBU (filled by ‘store_fbu’).  This bank holds data that is 
equivalent to what is produced by the TWIST detector.  In the final step of 
digitization, the contents of the FBU bank are written to a data file by a function 
defined in YBOS (‘YBOS_write’). 

 
 
Figure 7: G3twist Output Procedure 

 

GUOUT fill_evid 

store_fbu 

store_mcsp … 

more MC 
banks 

YBOS_write

Fills event ID info for data banks. 
 
 
This bank holds TDC data from the 
event. 
 
 
Extra banks used for analysis.  They 
are written to the data file, but are not 
equivalent in any part to what is 
recorded by the TWIST detector. 
 
 
 
 
Writes the data banks to the output 
file.    

End of event output: 
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4.2) Possible Entry Points from GEANT4 
 

Two possible entry points were seen from the preceding hits and digitization 
scheme.  In one method, G3 is allowed to handle the hits collection, and the ZEBRA 
memory banks are used.  In the other method, required hits data is retrieved from 
available G4 hits collection structures, and some G3twist routines are modified 
slightly.  The use of the ZEBRA memory banks is avoided entirely.  

 

Option 1: Using the G3 hits collection and ZEBRA 
 

The entry points in this scheme are the two ‘store_hit’ routines.  At every 
step within a chamber or scintillator, the routines would be called and provided 
with the appropriate parameters from G4, such as current step position and time of 
flight.  The ZEBRA banks would have to be initialized early on in the G4 
program flow, so that JHITS may be filled correctly by these two routines.  
Storing and accessing information from these banks would be accomplished by 
using G3 kernel routines, such as ‘gsahit’ and ‘gfhits’. 
 

While this option does have the advantage of requiring very little 
translation or modification of existing FORTRAN subroutines, it relies heavily on 
the ZEBRA memory banks, which are quite complicated, and in this case, 
problematic.   
 

The problem with the ZEBRA banks lies in the creation of the detector 
banks JSET and JDET.  It may be plausible to recreate the JHITS bank.  This 
would require general initialization to create the bank, and then the ‘store_hits’ 
routines to fill it.  However, it would be very difficult to recreate the JSET bank.  
JSET and its related bank, JDET, are initialized and filled by 10 subroutines in 
G3twist, corresponding to the complete geometry definition.  To create these 
banks in G4, the geometry definition would then have to be carried out twice.  
The geometry would be defined once for the purposes of G4 and its tracking, and 
once solely for the creation of the ZEBRA banks.  The result would be a mess of 
geometry definitions, which would be time consuming to modify and would 
contradict the philosophy of object oriented design. 

 
 

Option 2: Using the G4 hits collection, avoiding ZEBRA 
 

This option entirely avoids the use of ZEBRA banks.  Within G4twist, a 
new class would be implemented including methods from the G3twist ‘store_hits’ 
routines, translated for compatibility with G4 tracking procedures and hits 
collection structures.  The function of the class would be to process and store hits 
in a manner very similar to that of the JHITS banks.  Then, at then end of an 
event, modified versions of the ‘process_digitization’ routines would be passed 
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parameters from these hits collection structures, as well as required geometry 
information.  This would avoid references to JHITS and JSET.  These 
‘process_digitization’ routines would then carry out the remaining digitization 
exactly as it occurs in G3twist. 

 
 

Option 2 is the most maintainable, and likely the least time-consuming option 
available.  The challenge then, in terms of design, is to use the standard tools for hits 
collection in GEANT4 to perform this non-standard procedure. 



 20

 

5) G4twist Hits Collection and Digitization Design 
 

The standard design for hits collection and digitization for G4 would not allow the 
inclusion of G3twist subroutines.  The following alternative design allows the use of the 
flexible hits collection structures of G4, as well as some valuable G3twist routines 
(Figure 8). 
 

5.1) Classes 
There are four main classes involved in the hits collection and digitization design. 

The following is a brief description of each of the four classes: ChamberHit, 
ChamberSD, ChamberHitsCollectionG3, and DigitizationG3.  For a template of each 
class, see Appendix A.  For a glossary of their attributes, see Appendix B.    
 

ChamberHit 
This class provides “hit” objects, which store all required information about a hit.  

For example, the energy deposited, position, and time of hit are associated with an 
object of this class.  Hits data is stored/retrieved by the access functions of this class 
(e.g. GetEnergyDeposit()).  The class also has hits collection (HC) structures 
associated with it, used for storing a group of hit objects. 
 

Access to these HC structures, which are equivalent in purpose to the JHITS bank 
in G3twist, is the main design challenge in porting hits collection and digitization to 
G4twist. 
 

ChamberSD 
The methods of this class are implemented when a track deposits energy in a 

sensitive volume of the detector.  PC and DC cells, as well as the muon scintillator, 
are defined as sensitive volumes.  The HC structures are also initialized within a 
method of this class. 

 

ChamberHitsCollecitonG3 
The actual processing of hits occurs here, including calculating drift times and 

finding the minimum drift distance to the sense wire.  This class fills the HC 
structures initialized by ChamberSD; a record is kept for every sensitive volume that 
has been hit.  For example, the record (or cell-hit), includes leading and trailing edge 
times of each cluster signal. 
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DigitizationG3 
At the end of an event, this class processes all hits records for digitization.  This 

includes retrieving the records from the HC structures, and converting data to the bit 
pattern produced by TWIST’s TDC.  The methods are called from within another user 
class called EventAction. 

Figure 8: Class Relationships to HC structures, G4twist 

 

 

 

5.2) Flow 
 

Hits Collection 
 
The following is a breakdown of the hits collection process (Figure 9). 

HC Structures
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DigitizationG3 
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Figure 9:  Hits Collection Flow, G4twist 

 
 

1) Initialize: 
In this method of ChamberSD, three HC structures are created and named, 
one for each type of sensitive volume.  They are also given identification 
numbers, and assigned to the general object HCE (hits collection of this 
event).   HCE manages the HC structures, allowing them to be accessed at 
the end of the event.  
  

2) ProcessHits:  
This method is invoked at each step that occurs within the sensitive 
volumes.  It is responsible for determining whether a track is entering, 
traversing, or exiting a sensitive volume.  The corresponding methods, 
enteringCell(), accumulateEdep(), and exitingCell() of the 
ChamberHitsCollectionG3 class, are invoked.  
 

a. enteringCell 
i. If the volume is a DC or PC cell: 

This method sets parameters to their initial values for a cell.   
Such initializations include setting min_time and max_time to 
large and small numbers respectively, the minimum drift time to 
zero, and zwire_min/zwire_max are set to the current point’s x-
coordinate.   
 

G4SteppingManager 

ChamberSD 

ChamberHitsCollectionG3 

2. a) enteringCell 

2. b) accumulateEdep

2. c) exitingCell 

1) Initialize 

2) ProcessHits

dtt_gettime 

sort_ch_hits

Indicates a 
FORTRAN routine 
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The total energy deposit, as well as total number of hits for the 
cell, is initialized to zero. 
 
All of these values are likely to be modified by successive 
invocations of accumulateEdep() as the track traverses the cell.   

 
ii. If the volume is the scintillator: 

In the TWIST detector, all times recorded by the TDC are relative 
to the time at which the scintillator is triggered by a muon.  In 
order to simulate event trigger, this method resets the G4 timer to 
zero once a muon enters the scintillator. 
  
The method also records the time value of every particle entering 
the scintillator.  This value later assists the digitization routines in 
determining if the event was triggered, since the trigger particle 
should have an initial time of zero. 

b. accumulateEdep 
i. If the volume is a DC or PC cell: 

This method increments the number of hits, recalculates total 
energy deposit for the cell, and determines the drift time to the 
sense wire for each step.   This latter task is performed by passing 
the local y- and z- coordinates of the current point (in the frame of 
reference of the specific cell) to the G3twist subroutine 
‘dtt_gettime’.  This routine then transforms the positions into 
integer indices, used for retrieving the drift times from the 
isochrone tables. 

 
The function also determines the minimum drift time based on the 
drift times of all previous hits in that cell.  A deviation is added to 
the retrieved drift times, based on measured PC and DC resolution, 
which smears the times in a realistic way. 
   

ii. If the volume is the scintillator: 
The total energy deposited in the volume is recalculated. 
 

c. exitingCell 
This method stores each cell-hit in the HC structures.  
 

i. If volume is a DC or PC cell 
The leading and trailing edge times for each step in this cell are 
calculated based on their previously determined drift times (stored 
in the drift_time array).  These leading and trailing edge times are 
calculated by the G3twist routine ‘sort_ch_hits’.  
 
The following attributes of the cell-hit are then stored for PC and 
DC volumes: 
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• minimum and maximum distances on the sense wire
 (zwire_min, zwire_max), 

• space point of the minimum time (min_point),  
• minimum and maximum times on the wire

 (min_time/max_time),  
• minimum drift time (min_dtime),  
• leading and trailing edge times (t1[] and t2[]),  
• total energy deposit (tot_edep) , 
• current cell and plane numbers (fChamberNb,

 motherCopyNo),  
• chamber name (aPVname),  
• particle ID (iPart), 
• number of hits (nhits)  

 
ii. If volume is the scintillator 

The following attributes of the cell-hit are stored for the SCIN 
volume: 

• current volume number (fChamberNb) 
• current mother volume number (motherCopyNo) 
• particle ID (iPart) 
• total energy deposit (tot_edep) 
• initial time of flight (tofin) 

 

Digitization Processing and Output 
 

The digitization design in G4twist was constructed as a gateway to the G3twist 
‘process_digitization’ routines.  These routines store ADC and TDC information in 
the arrays ‘hit_times_sc’, ‘hit_times_pc’, and ‘hit_times_dc’.  These arrays contain 
information that will be converted to the bit pattern generated by TWIST’s TDC, in 
the routine ‘simulate_1877_tdc’. 
 

Due to difficulties with references to the JSET bank in “process_sc_digitization”, 
this routine has been completely translated to C++.  The two routines 
“process_pc_digitization” and “process_dc_digitization” were simply modified to be 
compatible with GEANT4 without being translated. 
   
The following is a breakdown of the digitization processing stage (Figure 10). 
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Figure 10: Digitization Flow, G4twist 

 

 
1) BeginOfEventAction 

At the start of an event, this method retrieves the HC structures.   
The three HC structures are then available for use in EndOfEventAction. 

2) EndOfEventAction 
 
Before any methods are invoked, this is where the user may print out the contents 
of the HC structures for debugging.  It is also where preliminary histograms may 
be generated for testing purposes, before any digitization is performed.  
Each of the following methods, belonging to the class DigitizationG3, is then 
invoked:  

a. process_sc 
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This method loops through all scintillator volumes (although there is now 
only one, there is the possibility for future extension) and creates a two-
dimensional array, ‘signals’, based on hit information.  
‘signals’ contains, for every hit: 
 

• time of TDC hit, taken from the HC structure’s record of ‘tofin’ 
• width of TDC hit, calculated based on above value 
• time of ADC hit, calculated from the hit’s ‘tofin’ 
• width of ADC hit, calculated base on above value 

 
 The ‘signals’ array is stored in a memory location that is shared between 
the C++ classes and the FORTRAN subroutines.  It is then used by the 
G3twist routine ‘resolve_adc_signals’, which determines the start energy 
and total energy for the ADC hit.   
 
If there is more than one hit stored in this volume, ‘resolve_tdc_signals’ is 
called in order to combine overlapping time signals, if they exist, as well 
as check for dead regions of the wire.  
 
A two-dimensional array ‘hit_times_sc’, stored in the shared memory 
location, is then filled.  It contains: 

• scintillator ID number (this value is always 1) 
• leading edge time 
• trailing edge time 
• time and width of the first ADC hit 

 
b. process_pc 

A two-dimensional array is filled with hit information from the PC hits 
collection structure.   

 
For each cell in a given plane, the following information is passed to 
‘process_pc_digitization’ through the two-dimensional ‘hits’ array: 

• minimum position (position of minimum drift time) x, y, and z 
coordinates.  

• particle ID 
• min/max time 
• min/max position along the wire 
• total energy deposit 
• number of hits 
• leading and trailing edge times 

   
A second array (‘cells’) contains cell numbers in the order they are stored 
in ‘hits’.  This array is also passed to ‘process_pc_digitization’, and is 
used internally to sort hits based on cell number, removing the dependency 
on the JSET bank. 
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The FORTRAN routine ‘process_pc_digitization’ has been modified such 
that it no longer retrieves information from JHITS and JSET, but instead is 
passed the required information through the ‘hits’ and ‘cells’ arrays.  It 
then carries out its task of dealing with the multiplexing of various PC 
wires, and also resolves the ADC and TDC signals (dealing with signal 
overlap, for example).  The resulting data is placed in the common array 
‘hit_times_pc’, to be used in the routine ‘simulate_1877_tdc’. 
  

c. process_dc 
The same procedure as above is carried out, with the hits information 
retrieved from the DC hits collection structure instead.  
 
The FORTRAN routine ‘process_dc_digitization’ is called for each plane, 
accepting the ‘hits’ and ‘cells’ array.  This routine is responsible for 
resolving the TDC signals, and filling ‘hit_times_dc’ for later use in the 
routine ‘simulate_1877_tdc’.  Note that there are no multiplexed wires in 
the DC planes, as well as no ADC connections, making this routine 
simpler than ‘process_pc_digitization’. 
 

d. simulate_tdc 
This method simply calls the G3twist routine ‘simulate_1877_tdc’, 
passing it the current event number. 
 
This FORTRAN routine is responsible for converting all processed hit 
data (stored in ‘hit_times_sc’ , ‘hit_times_pc’ , ‘hit_times_dc’ ) to the bit 
pattern generated by TWIST’s TDC.   

 
e. guout 

Theoutput process is entirely wrapped from G3twist.  The YBOS banks 
are initialized and the data file is opened for writing at the start of a run, in 
the class RunAction.   GUOUT, a G3twist routine, is called directly from 
within EndOfEventAction in the EventAction class.  It calls the necessary 
routines responsible for filling and writing out YBOS banks with 
information from the ‘hit_times’ arrays.  Currently, only the detector bank 
FBU is created and written to a binary data file through the routine 
‘store_fbu’ (see Figure 7: G3twist Output Procedure).   
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6) Tests and Results 
In order to test the new hits collection and digitization code, a series of 

comparisons between G3twist and G4twist were made.  For the following plots, each 
describes a run with 1000 events, consisting of positrons with an initial kinetic energy 
of 20 MeV.  The magnetic field is switched off.  There is a linear distribution in x-y 
for the positrons’ vertices (within a 5cm radius), and the z-coordinate for each vertex 
is -81.0 cm. 
The maximum step length is set to 450 microns in G4twist.  In G3twist, the step 
length is determined by the ion clustering process at each step, but has a mean value 
of approximately 300 microns. 
 

The data are plotted both before and after the digitization routines are called, in 
order to test the two areas of code separately. 

 
 
 

6.1) Hits Collection 
 
1) Minimum Drift times 

 
The following figures (Figure 11 - Figure 14) are histograms of the minimum drift 
times for each DC and PC cell. 

Figure 11: G3twist - DC min drift time 
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Figure 12: G4twist - DC min drift time 

 
 
Figure 13: G3twist - PC min drift time 
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Figure 14: G4twist - PC min drift time 

 
 

Discussion: 
The distribution of minimum drift times for DC and PC cells is expected to be a 

smooth curve with one sharp peak around zero ns.  It is also expected that the range 
of minimum drift times for PC cells will be smaller than that of the DC cells.  This is 
due to the smaller area of the PC cells, since the drift time depends on the distance 
from the wire.  It is also due to fast gas used in the PC cells, which causes all drift 
times to be shorter.   
 

These trends are clearly displayed by the G3twist plots.  The G4twist plot of DC 
minimum drift time is adequately similar to that produced by G3twist.  

 
However, the distribution of PC minimum drift time produced by G4twist shows 

significant differences compared to that produced by G3twist.  It is not a smooth 
curve, but instead shows several peaks.   
 

In order to investigate this discrepancy in the PC cells, the distribution of leading 
edge times for every step-hit (not just the minimum time) was studied for both types 
of cells.   
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2) Leading edge times 
The following figures (Figure 15 and Figure 16) are histograms of the leading 

edge time for each step-hit in all DC and PC cells. 
Figure 15: G3twist - DC leading edge time 

 
Figure 16: G4twist - DC leading edge time 
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Discussion: 
The distribution of leading edge times is expected to be a smooth curve 

similar to that of the minimum drift times.  As displayed by the G3twist 
distribution for DC cells, only one peak is expected.  The G4twist distribution 
shows multiple peaks in leading edge time, indicating a problem within the code. 
 

One possible source for this error could arise from the steps that the 
particle takes through the cell.  If the particle takes the same specific steps each 
time it enters a DC cell, the leading edge times for that step will repeat for every 
cell, and cause the sharp peaks observed in Figure 16.   These peaks would not 
necessarily occur in the minimum drift time distribution, as the minimum time 
may not be produced by one of these repeated steps. 
 

If the error lies in the stepping procedures, a two-dimensional plot of the 
position of all hits within the cells would confirm it.  It would not show a random 
distribution of points, but an obvious pattern instead.  Such two-dimensional plots 
were constructed for both types of cells in G4twist. 

 
 
3)  Y-Z hit coordinates  

The following figures (Figure 17 and Figure 18) show the y vs. z coordinates of 
all step-hits in all DC and PC cells in G4twist.  In the frame of reference of the cells, 
the wire lies along the x-axis, and thus the following figures represent superimposed 
end-views of all cells. 

Figure 17: G4twist - DC hit positions 
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Figure 18: G4twist - PC hit positions 

 
 
 
 

Discussion: 
Obvious lines are present in these distributions, instead of the expected 

random distributions.  This confirms that the problem is indeed a stepping error.   
 

Upon closer inspection, it can be seen that the lines in the DC cells are 
separated by approximately 0.4 mm.  The separation corresponds to the maximum 
step length of 450 microns that was set for this run, indicating that the problem 
may lie in G4’s implementation of user step limits.  The toolkit should smear the 
step positions slightly, based on the step limit, to avoid similar problems, but it 
does not appear to do this. 
 
  The distribution for PC cells is more puzzling.  The dark lines are seen to 
be asymmetrical across the z axis.  This may suggest a bug in the geometry, as it 
only occurs within the PC cells.  If there is a bug in the PC geometry, there may 
be a similar one in the DC cells, which in fact causes the stepping errors. 
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6.2) Digitization Processing 
The following figures show the leading edge times in DC cells for G4twist.  

Figure 19 is a histogram of leading edge times before digitization processing (similar 
to Figure 16), and Figure 20 shows the distribution after hits have been processed for 
digitization.  Note: digitization processing refers to the implementation of the 
methods “process_sc”, “process_pc”, “process_dc”, and “simulate_tdc”.  Output to a 
data file using “guout” is not a factor in these distributions. 
 

Figure 19: DC Leading edge times, before digitization processing – G4twist 

 
 
Figure 20: DC leading edge times, after digitization processing – G4twist 
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The following figures (Figure 21 and Figure 22) show the leading edge times in PC cells 
in G4twist, before and after digitization processing.   
Figure 21: PC leading edge times, before digitization processing – G4twist 

   
Figure 22: PC leading edge times, after digitization processing – G4twist 
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Discussion: 
The similarity of the above figures is as expected.  After digitization processing, the same shape in the 
time spectra should be seen, with slight variations.  For the plots of DC leading edge time (Figure 19 
and Figure 20) there are small differences in the shape of the histograms, especially noted at the 25ns 
peak, which is smaller following digitization processing.   In the plots of PC leading edge time (The 
following figures (Figure 21 and Figure 22) show the leading edge times in PC cells in 
G4twist, before and after digitization processing.   

Figure 21 and Figure 22) it can be seen that the large peak at 50ns has 
been dramatically reduced. 
 

The main difference in these distributions is the number of entries in each.  
For DC cells, there are 212 177 hits included in the histogram before digitization.  
After digitization, this number is reduced to 208 218 hits.  For PC cells, 18 708 
hits are reduced to 17 851.   The number of hits is expected to decrease after 
digitization, due to the TDC overlap procedures which are carried out in 
‘resolve_tdc’.  This routine combines several hits if their leading and trailing 
edges overlap.  

  
Although these distributions are still incorrect when compared to G3twist, 

as noted in the above section, they do serve as preliminary evidence that the 
digitization routines have functioned correctly.  

6.3) Output 
An attempt was made to run standard analysis procedures on the G4twist output 

data file. This test showed that the file is of the correct format, but it does not contain 
any TDC data.  This error may be due to incorrect storage of the ‘hit_times’ arrays, 
which hold the data that is to be written to the YBOS FBU bank.  It may also be an 
error in wrapping the YBOS_write routine, which performs the actual file output.     
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7) Conclusions 
 

A method for digitizing G4twist has been employed that allows the reuse of some 
G3twist subroutines, but that also avoids any reliance on ZEBRA dynamic memory 
structures.  All dynamic memory requirements are handled effectively by C++ structures, 
while still successfully incorporating wrapped/translated G3twist routines. 
 

The hits collection and digitization processing methods of G4twist have been 
tested against those in G3twist.  It has been seen that a significant error is introduced in 
G4twist by the stepping procedures.  This error is influenced by the maximum step length 
set by the user, a process implemented within GEANT4.  When this error is taken into 
account, it can be seen that the observed errors in G4twist time spectra are not due to the 
hits collection and digitization processing methods. 
    

A binary data file of the correct format is successfully created in the output stage 
for each run.  However, this file is not yet useful for analysis, and data from G4twist 
cannot yet be compared to data from the TWIST detector.  The problem can be attributed 
to an output error, and not to a bug in digitization processing. 
   
 
 
8) Recommendations 
 

It is recommended that before any further comparisons are completed, an analysis 
of the stepping error be performed.  A two-dimensional histogram of y vs. z for all steps 
inside the detector (similar to Figure 17) at global scope, should be made, using a small 
number of events.  Such a test may show patterns emerging not only in the cells, but in all 
volumes, which may indicate a deeply-rooted problem in GEANT4.  If it does not show a 
pattern, a more detailed look at the PC and DC cells, especially in terms of geometry 
definition, may be in order. 
 
 It is also recommended that an investigation of how ‘guout’ retrieves data from 
the ‘hit_times’ arrays be undertaken.  An error in this area would cause the FBU bank to 
be filled incorrectly, which would account for ‘empty’ data files. 
 
 Lastly, an effort should be made to include an ion clustering process in G4twist, 
based on what has already been implemented in G3twist.   
 

When these areas are improved, useful analysis can then be run on G4twist data, 
and detailed comparisons can be made to both G3twist and real data. 
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APPENDIX A 
G4twist Class Templates 
 

 
 
 

Methods: 
 
Public: 
 enteringCell()  :  void 
 accumulateEdep() : void 
 exitingCell() : void 

 

Attributes: 
 
Private: 
 DChitCollection : pointer G4THitsCollection 
 PChitCollection : pointer G4THitsCollection 
 SChitCollection : pointer G4THitsCollection 
 
 fStepPoint : constant pointer G4StepPoint 
       fTrack : pointer G4double 
 fEdep : G4double 
 fPartName : G4String 
 fChamberNb : G4int  
 fIDtype : G4int   
 
  nhits  
 tot_edep : static G4double 
   
 dPos : static  G4ThreeVector  
 min_point : static G4ThreeVector  
 zwire_min : static G4double   
 zwire_max : static G4double 
 
  
 min_time, max_time, min_dtime : static G4double 
 drift_time[LOCAL_HITS_MAX] : static G4double   
 t1[LOCAL_HITS_MAX] : static G4float 
 t2[LOCAL_HITS_MAX] : static G4float  
 
 tofin : static  G4double  

 

ChamberHitsCollectionG3
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Methods: 
 
Public:   
 
 TWISTChamberHit * GetHit() {return this;} 
 
 
//Access methods for all private  
//attributes are also available. 
 
 
 

ChamberHit 

Attributes: 
 
Global: 
 
 LOCAL_HITS_MAX = 200;  //max hits in a cell 
Public: 
 
 t1 [LOCAL_HITS_MAX]  :  G4float array 
 t2 [LOCAL_HITS_MAX]  :  G4float array  
  
Private: 
 //for all volumes 
 //--------------- 
 trackID  :  G4int 
 fPartID  :  G4int 
 fPVname  :  G4String 
 chamberNb  :  G4int 
 planeNb  :  G4int 
 edep  :  G4double 
 pos  :  G4ThreeVector 
 
 //for DC and PC cells only 
 //------------------------ 
 nhits  :  G4int 
 fMin_time  :  G4double 
 fMax_time  :  G4double 
 fZwire_min  :  G4double 
 fZwire_max  :  G4double 
  
 //for SCINT only 
 //-------------- 
 tofin  :  G4double 
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EventAction 

Methods: 
 
Public:   
 BeginOfEventAction(G4Event * ) : void 
 EndOfEventAction(G4Event * ) : void 
 

Attributes: 
 
Private: 
 
 scCollID : G4int 
 pcCollID : G4int 
 dcCollID : G4int 
 
 G3digi : DigitizationG3  
 

ChamberSD 

Methods: 
 
Public:   
 
 Initialize(G4HCofThisEvent * ) : void 
 
 processHits(G4Step *, G4TouchableHistory *) : G4bool 
 
 EndOfEvent (G4HCofThisEvent *) : void 
 
 clear() : void 
 drawAll() : void 
 printAll() : void 
 

Attributes: 
 
  
Private: 
 DChitCollection : pointer G4THitsCollection 
 PChitCollection : pointer G4THitsCollection 
 SChitCollection : pointer G4THitsCollection 
 
 G3HC : pointer ChamberHitsCollectionG3 
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DigitizationG3 

Methods: 
 
Public:   
 process_sc() : G4bool 
 process_pc() : G4bool 
 process_dc() : G4bool 
  
 simulate_tdc(G4int eventNo) : void  
 
 
 

  

Attributes: 
 
Global: 
 
 MAX_SIGNALS = 24;  
 nhmax_sc = 25; 
  nhmax_pc = 1000; 
 nhmax_dc = 2500; 
 
Private: 
 

DChitCollection : pointer G4THitsCollection 
 PChitCollection : pointer G4THitsCollection 
 SChitCollection : pointer G4THitsCollection 
 
 nhits_SC : G4int 
 nhits_PC : G4int 
 nhits_DC : G4int 
 
 hits_pc[nhmax_pc][100] : G4float array 
 hits_dc[nhmax_dc][100] : G4float array 
 
 cells_pc[nhmax_pc] : G4int array 
 cells_dc[nhmax_dc] : G4int array 
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APPENDIX B 
GLOSSARY of ATTRIBUTES 
 
At Global Scope: 
LOCAL_HITS_MAX The maximum number of hits in a cell.  It is a constant used 

as the maximum size for arrays in ChamberHitsCollectionG3. 
(200) 

MAX_SIGNALS Maximum number of signals in one cell (25) 
nhmax_sc The maximum number of hits for the scintillator in one run 

(25) 
nhmax_pc The maximum number of hits for the PC’s in one run (1000) 
nhmax_dc The maximum number of hits for the DC’s in one run (2500) 
 
 
ChamberHitsCollectionG3: 
DChitCollection Stores hits for all DC cells until the end of an event. 
PChitCollection Stores hits for all PC cells until the end of an event. 
SChitCollection Stores hits for all SC cells until the end of an event. 
fStepPoint Pointer to G4StepPoint, used to access information about the 

current step (position, current volume, etc).  Can refer to either 
the ‘pre step point’ or the ‘post step point’, depending on how the 
object of this class is constructed. 

fTrack Pointer to G4Track, used to access information about the current 
particle. Also used to reset the time to zero when event is 
triggered  
(fTrack->SetLocalTime()),and retrieve the current time of flight  
(fTrack->GetLocalTime()). 

fEdep Energy deposit for the current step. 
fPartName Name of current particle. 
fChamberNb Copy number of the current cell (equal to 1 for the scintillator). 
fIDtype Type of current volume (1 = DCEL, 2 = PCEL, 3 = SCIN). 
nhits Total number of hits in one cell. 
tot_edep Total energy deposit in one cell. 
dPos Position in daughter coordinate system (reference frame of the 

current cell).  The sense wires for PCEL and DCEL lies along the 
x-axis at  (x, 0, 0).  

min_point Position at which the minimum total time occurs (total time is 
drift time plus time of flight). 

zwire_min minimum position along the sense wire (x-axis) for a cell. 
zwire_max maximum position along the sense wire (x-axis) for a cell. 
min_time Minimum total time (drift time plus time of flight). 
max_time Maximum total time (drift time plus time of flight). 
drift_time[] Stores total times (drift time plus time of flight) for all hits in a 
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cell. 
t1[] Stores all leading edge times for ion clusters within a cell. 
t2[] Stores all trailing edge times for ion clusters within a cell. 
tofin Initial time of flight for any particle entering the scintillator (will 

be zero for the trigger particle). 
 
 
 
ChamberHit: 
t1[] Stores all leading edge times for ion clusters within a cell. 
t2[] Stores all trailing edge times for ion clusters within a cell. 
trackID track number which particle belongs to. 
fPartID particle number for the hit (corresponding to GEANT3 particle codes)  

1) gamma 
2) e+ 
3) e- 
4) neutrino 
5) mu+ 
6) mu- 

fPVname Name of volume in which hit occurred (PCEL, DCEL or SCIN). 
chamberNb Number of cell in which cell-hit occurred. 
planeNb Number of plane in which cell-hit occurred. 
edep total energy deposit for the cell-hit. 
pos min_point for the cell-hit (see min_point in ChamberHitsCollectionG3). 
nhits total number of hits in the cell-hit. 
fMin_time see min_time in ChamberHitsCollectionG3. 
fMax_time see max_time in ChamberHitsCollectionG3. 
fZwire_min see zwire_min in ChamberHitsCollectionG3. 
fZwire_max see zwire_max in ChamberHitsCollectionG3. 
tofin see tofin in ChamberHitsCollectionG3. 
 
ChamberSD: 
DChitCollection See DChitCollection in ChamberHitsCollectionG3. 
PChitCollection See PChitCollection in ChamberHitsCollectionG3. 
SChitCollection See SChitCollection in ChamberHitsCollectionG3. 
G3HC Pointer to an object of ChamberHitsCollectionG3. 
 
 
EventAction: 
scCollID ID number (in G4’s SDManager) for scintillator’s hits collection 

structure.   
pcCollID ID number (in G4’s SDManager) for PC’s hits collection structure.   
dcCollID ID number (in G4’s SDManager) for DC’s hits collection structure.   
G3digi Pointer to an object of the class DigitizationG3. 
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DigitizationG3: 
DChitCollection see DChitCollection in ChamberHitsCollectionG3. 
PChitCollection see PChitCollection in ChamberHitsCollectionG3. 
SChitCollection see SChitCollection in ChamberHitsCollectionG3. 
nhits_SC total number of cell-hits in SChitCollection. 
nhits_PC total number of cell-hits in PChitCollection. 
nhits_DC total number of cell-hits in DChitCollection. 
hits_pc[][] 2D array containing hits information for a particular PC plane.  

Passed to the G3twist subroutine “process_pc_digitization”. 
hits_dc[][] 2D array containing hits information for a particular DC plane.  

Passed to the G3twist subroutine “process_dc_digitization”. 
cells_pc[] 1D array containing the PC cell numbers for the cell-hits in one 

plane. (In the same order that the cell-hits appear in the array 
hits_pc[][]) 

cells_dc[] 1D array containing the DC cell numbers for the cell-hits in one 
plane. (In the same order that the cell-hits appear in the array 
hits_dc[][]) 
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