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I. Phys: Condens. Matter 4 (1992) 45334556. Printed in the UK 

Quantum calculation of the muon depolarization bnction: 
effect of spin dynamics in nuclear dipole systems 

P Dalmas de. Rbotiert and A Yaouanc 
Cenm d'Etudes N u c l b i  DRFMWPSMSLIH 85X, F-38041 Grenoble a d e x ,  France 

Rseived 17 October 1591 

Abstract. We have derived formal expressions for the p i l i v e  muon depolarization funs  
lions using M iterative procedure both for the longitudinal and uansvene experimental 
geometries. ?hey are n l id  at least in the motional narrowing limit and at small time 
We have used our formal expressions to study the depolarization Iunctions far a muon 
diffusing in a lattice of nuclear dipoles neglecting the possibility of the muon remming lo 
its original localization site This work indicates that lhe effect of the spin dynamics on 
the depolarization Iunctions is imponant at low fields for both geometries. In the case 
of the longitudinal geomey we have shown that our semnd-order iteration formula and 
the stmng mllision model with the numerically exad static [unction give the same result 
when the muon jumping rate is large enough. T l k  has WO important consequences: 
(i) when the muon jumping me b sufficiently large it b p i b l e  to calculate lhe wbole 
depolarization funclion with a modest numerical &on using our iterative formula; and 
(ii) the fact that the WO methods give the same result in lhe fast diffusing limit shows 
that lhe strong collision model with the exact static function contains all the dynamics; 
the spin-lattice relaxation (7'1 process) is included. 

1. Intmduction 

The ditfusion of a light interstitial particle such as a positive muon, p t ,  is a fascinating 
subject in solid state physics. The quantum effects are important even at relatively 
high temperature (100 K). Fbr aluminium, in the low-temperature region, the JL+ 

ditfusion constant is much larger than expected if only the lowest order of the muon- 
electron interaction is taken into account (Kehr et al 1982). However, as shown by 
Kondo (1986) and Yamada (1984), if the effect of the higher-order terms of this 
interaction is included, the agreement between theory and experiment is much better. 

The information obtained on the p+ diffusion properties from positive muon 
spectroscopy (JLSR) is extracted from the analysis of the measured JLSR depolarization 
functions, P,(t) (a refers to the direction of the measurement; see later), and is 
model dependent; see Chappen and Grynszpan (1984), Schenck (1985) and Chappert 
and Yaouanc (1986). Here we will only consider compounds for which the electronic 
magnetic moments have no effect on P,(t) as most of the experimental work on 
diffusion has been performed on such compounds. In this case the depolarization 
of the pt spin is due to the magnetic field produced at the p+ site by the nuclear 
dipoles of the lattice. 

t Current address: Hahn-Meitner-lnstitut Berlin, D-1MX) Berlin 39, Federal Republic of Germany. 
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Usually a dynamical P,( t )  function is computed in terms of a depolarization 
function for a static p t ,  &)(t), using the strong collision model (Kehr el a1 1978, 
Hayano er d 1979). A common practice for the calculation of $ ) ( t )  is to express 
it as an average of the p t  spin over the distribution function of the magnetic field at 
the p t  site. Whereas the p t  spin dynamics is described by the Larmor equation, the 
nuclear spin dynamics due to the magnetic field created by the p t  at the nuclear sites 
is neglected. The parameter (only one parameter for a p t  site of cubic symmetry) 
of the distribution function is estimated from the second moment of the interaction 
Hamiltonian between the p* magnetic moment and the magnetic moment of the 
lattice nuclei (van Vleck’s method). Using quantum mechanics it has been shown 
numerically that this method does not describe Pio)(O‘(r) in detail (Celio and Meier 
1983, Celio 1986). It can even lead to a wong estimate of the p t  diffusion constant 
In this paper we present an iterative method to compute the P,(t) functions which 
is valid at least in the motional narrowing limit. Although it is not only restricted to 
the case of depolarization due to nuclear dipole moments, in this paper we will only 
consider this source of depolarization. We will show for the longitudinal geometry, 
in the case of a p t  diffusing sufficiently rapidly, that this method leads to a P , ( t )  
function which is the same as the one computed bom the strong collision model 
with P?’(t) calculated from quantum mechanics. Therefore the strong collision 
model with this P!’’(t) function contains all the spin dynamics. On the other hand 
the method which uses the strong collision model with Pia’(t) deduced from the 
static distribution function method gives a bad approximation of P,(t). Our work 
shows that it is important for a reliable description of P,(t) in the two experimental 
geometries to take the spin dynamics into account 

Rccently experiments designed to study in great detail the p t  diffusion properties 
have been reported for Al (Kadono et al 1990a) and Cu (Luke er a1 1991). Kadono er 
a1 (199Ob) have discussed results obtained on the weak ferromagnet MnSi for which 
the depolarization due to the s5h4n nuclei is not negligible and should, therefore, be 
described properly if one wants to extract reliable information on the electronic spin 
dynamics in this compound. In all these cases our theoretical results should help to 
give a consistent picture of the ~ S R  data. 

The organization of this paper is as follows. In section 2 we briefly review the 
method of computation of the depolarization functions using the stochastic theory 
and discuss its validity. The formal quantum expressions for the functions, =lid at 
least in the motional narrowing limit, are established in section 3. No hypothesis 
concerning the source of depolarization is made. In section 4 we discuss in some 
detail the case of a pt diffusing in a lattice of nuclear dipoles. A comparison of the 
results from the second-order iteration with the strong collision model for the two 
types of static depolarization functions (classical and quantum mechanics) is made. 
Section 5 contains a summary, comments on possible extensions and the conclusions. 

2. The depolarization functions from the stochastic theory 

The stochastic theory of dynamical processes was fist used to compute P,(t) for the 
transverse and longitudinal experimental geometries by Kehr er al (1978) and Hayano 
et al (1979) respectively. Here we present a short review of their results to define the 
parameters and discuss the approximations made within this theory. The magnetic 
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field dynamics, which is due, in this theory, to the p t  diffusion and/or the interaction 
between the nuclear dipoles which are at the origin of the field distribution at the 
p+ site, is described by the 'strong collision' model (Kubo 1954). For clarity we will 
use the language of cMusion. A characteristic of this model is that the depolarization 
function for a static p t ,  d0'(t), is needed. This last function can be computed 
directly for simple cases using quantum mechanics (Celio 1986). But because of 
numerical difficulties, it is always useful to use a classical mechanics method with a 
static distribution. We fust describe Pio)(t)  obtained from this method and then 
consider the case of a diffusing pt. 

21. Depohrkation finetions for a static muon 
By definition at the initial time, t = 0, the pt spin is directed along the z-axis. The 
polarization at a later time in the a direction is given by 

where S is the muon spin (S = i), S,(i) its projection on the Q direction at time 
t and D ( B )  the static distribution function of the magnetic field B at the pt site. 
The exponent (0) specifies that we are dealing with a depolarization function for a 
static pt. Its significance will be clarified when discussing the effect of diffusion. 
In a so-called transverse measurement, an external magnetic field Be,, is applied 
perpendicular to the z-axis (the z-axis for example) and $'(t) (or .@'(t)) is 
recorded. In a longitudinal experiment a field can be applied along the z-axis during 
the measurement of Pio)'( t )  but sometimes no field is applied. 

For simplicity we suppose that the field distribution at the p t  site due to the 
lattice magnetic moments is isotropic (the second moments along the z-, y- and z- 
axes are the same). This is the case for a pt in metallic copper and aluminium. A 
generalization for an anisotropic distribution can easily be made (Dalmas de Rhotier 
1990). In addition we will hypothesise that the Uistribution is Gaussian. 

With these hypotheses, when no magnetic field is applied, the field distribution 
function is given by 

where y, is the pt gyromagnetic ratio, A'/$ the second moment of the components 
of the magnetic field distribution, 0 and q the polar and azimuthal angles of the 
magnetic field vector at the pf site. The S,(t) component of the pt spin is obtained 
from the solution of the Larmor equation: 

s,(t) = S [ ~ o s ~ e + s i n ~ e ~ ~ ~ ( y , ~ t ) ] .  (3) 

The Kubo-Toyabe function (Kubo and Toyabe 1966) is simply derived using equa- 
tions (l), (2) and (3): 
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R r  this experimental geometry Pio’(t) = 0 and Pc’ ( t )  = 0. Hayano et a1 (1979) 
give an expression for P$”(t) in the case of an external field applied along the zaxis. 

For the transverse geometry the spherical coordinates are not practical. In Carte- 
sian coordinates, with an external field Be,, applied along the r&~, the distribution 
can be written as 

P Dalmas de Riotier and A Yaouanc 

D ( B ) d B  = ( A ) s e x p  &TA (- 2A2 

x exp (-g) dB,dB, dB,. (5 )  

A closed form for P$”(t) can be given if the intensity of B,, is sufficiently large, 
Be,, > A/y,. Then as the resultant magnetic field at the pt site is, to a good 
approximation, directed only along the z-axis, the Sz(2) component of the pt spin 
deduced from the Larmor equation is 

In this approximation the transverse depolarization function computed using equa- 
tions (I), (5) and (6) is given by 

SJt) = scos ( Y , B Z t ) .  (6) 

The validity of the approximation made to derive equation p), Be,, B A/-/,, 
has been investigated by comparing Pp’(2) integrated numerically with the function 
given in equation (7). The numerical integration is defined by equation (1) with 
S , ( t )  deduced from the Larmor equation (equation (3) in Cartesian coordinates) 
and D ( B )  given by equation (5). Up to now the maximum measured A value for a 
nuclear dipole lattice in the transverse field geometry seems to be 0.40 MHz (Schenck 
1985), i.e. A/y, = 4.7 G. In practice the smallest transverse external magnetic field 
is about 10 G. This gives Be,, = Z.l(A/y,). In figure 1 we have drawn the 
two functions calculated with Be,, = 5(A/7,) and Bext = 2(A/y,) respectively. 
The two plots show that while the analytical formula (equation (7)) is still a fair 
approximation at Bext = 5(A/y,), it completely break down at lower fields. This 
is not surprising because at zero field P!”(t) is given by the Kubc-’byabe function. 

Generally the second moment of the field distribution for the two experimental 
geometries is computed according to Van Vleck This means that for the longitudinal 
and transverse case A2 is taken as 

2 1 
--r d h2 { [ % , p , ~ z l  l ~ * , ~ L i p l l  and - dii2 Tr { l%ip t sz l  Is=, %ipl} 

respectively. XLiP is the secular part of the dipolar Hamiltonian which describes 
the interaction between the p+ magnetic moment and the lattice nuclear magnetic 
moments. d is the dimension of the Hilbert space of the p t  sample system. The 
difference of a factor of two is related to the fact that in the longitudinal geometly the 
depolarization is produced by the two components of the field distribution perpen- 
dicular to the z-axis whereas for the transverse case only the component parallel to 
the direction of the applied field is responsible for the depolarization. In sections 4.1 
and 4.2 we will show that A2 can be obtained directly as a result of the iteration 
computation. Then the validity of the secular approbation can be gauged. 
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22 Depohriration functions for a diffusing muon 

We now consider the case where the field distribution at the p+ & timedependent. 
lWowing Kehr et al (1978) we describe it by the 'strong collision' model introduced 
by Kubo (1954) for nuclear magnetic resonance (NMR). It supposes that the local 
field at the p+ has a certain value for a given time interval. At a later time it takes 
a new value not correlated to the first one (Markov process). During its life in the 
sample, the p+ jumps 1 times and can see 1 different fields at its localization sites. 
Therefore the P,(t) function which takes into account the pt diffusion is given by 

+m 

Pa(t) = Rt( t )  
I=0 

where R,( t )  is the product of the depolarization function in the case of I jumps by 
the probability that the p+ has jumped I times during the time interval [ O , t ] .  For 
example we have &(t )  = P?'(t)exp(-vt) where v is the jump frequency. The 
same model gives 

kj  R , ( t )  = (L 'dt 'E,( t -  t ' )exp[-v( t -  t ')]vP,,(P)exp(-vt')  

where Pi, ( 1 )  describes the evolution of the projection (given by the Iarmor equation) 
of the pt spin on the a direction in the time interval [ O , t ] .  During this time the 
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p+ spin sees one field, Bi, which belongs to the field distribution. The hypothesis of 
the strong collision model allows the different terms of R,( t )  to be decoupled and 
therefore to be written as 

P Dahas de Rhtier and A Yaouanc 

RI( t )  = Y i- dt' R,(t - t')R,( t ') .  

Using the same method, an expression for R,+,( t )  can be derived. It is then possible 
to deduce the following integral equation for P,(t):  

P,(t) = @ ) ( t ) e x p ( - v t )  + U dt'P,(t- t')P:')(t')exp(-vt'). l 
The derivation of the equation for P,(t)  is independent of the shape of the Pio)(t) 
function. It can be computed either from classical or quantum mechanics. This fact 
will be used in section 4. Therefore P,(t) given by equation (8) may look quite 
general. But it should be realized that two physical hypotheses have been made. First 
we have neglected the possibility of the p t  returning to its original site after a jump. 
This is explicit from the jump frequency dependence we have taken, for example, 
for R,( t ) .  The second hypothesis has been made when we have supposed that the 
fields seen by the p t  in the different sites are independent of each other. This 
approximation may not be valid if the p+ jumps between sites which share common 
neighbours. 

Equation (8) has been derived using the language of the magnetic field distribu- 
tion. Therefore one could think that it is not general because it may not take into 
account the whole spin dynamics (the spin-lattice relaxation in particular). This is 
not true if, for the computation of the static depolarization function, the effect of the 
spin dynamics b included. This fact is supported by the numerical comparison made 
in section 4 between the results of the strong collision model with the exact static 
depolarization function and our second-order iteration. 

Using the Laplace transform of P,(t), P,(s), it is possible to study the asymp- 
totic behaviour of P,(t) valid when u / A  > 1. R r  the transverse geometry, when 
B,, > A/y,, we get (we do not take into account the cos(-y,B,,,t) term because 
it is not modified by the p+ diffusion) 

* 

The inverse Laplace transform of this latter function is 

A2 Az A2 P,(t)= I+- - - t - - - exp( -v f ) .  
U2 U U 

These are the first two terms of the expansion of the Abragam formula 

(9) 

where we have included the cos(y,BeXtt) for completeness. The Abragam formula 
is usually derived from a Gaussian-Markovian theory (Abragam 1961) whereas P,(t) 
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given by equation (8) is the result of a random-walk model. Kehr er al (1978) have 
shown numerically the remarkable result that P,(t) deduced from the Abragam 
formula and the integral equation with P,'"'(t) given by equation (7) are very similar 
even when u is small i.e. when the p t  is quasi-static. 

A study of the asymptotic expansion of P,(t) in zero field by the same method 
shows that when the jump rate is sufficiently large we have 

- 1 +ut ]  

This is the Abragam formula with the substitution A2 -+ 2A2 and with Be,, = 0. 
The factor two is again related to the fact that two components of the magnetic field 
at the site depolarize the pt spin in the longitudinal geometry. This approximate 
form, which seems to have been overlooked up to now, is in fact excellent when 
the ditfusion is sufficiently fast: the difference between the P,(t)  functions calculated 
from equations (8) and (4) and the Abragam formula with the mentioned substitution 
is less than 1% if v/A > 3. In the extreme motional narrowing limit the latter 
formula reduces to exp [ - (2A2 /v ) t ] .  We will see in the next section that the pre- 
asymptotic Abragam form (equation (10)) is very useful to understand the quantum 
mechanical results. In addition, when this form can be used, the computing time for 
Pz(t)  is notably reduced. 

3. Formal quantum expressions ot the depolarization functions obtained from itera- 
lion 

In this section we first discuss the relation between P,(t)  and the p t  spin operators. 
We then derive, using a second-order iterative procedure, a general expression for 
P,(t). In the next subsections this expression is used to deduce formulae for the 
depolarization function for the longitudinal and transverse geometries. 

For practical reasons it is useful to change the reference frame. In fact, from 
now on, we will use two reference frames, one for each experimental geometry. In 
figure 2 we define these two coordinate systems. 

A deteclor 

):- , Y 

x 

&+y .L t.0 

L detector 

zero or longitudinal field 

Figure 2 Reference frames used for rhe quantum mmputation (from section 3 on) of 
lhe depolarization functions in the longitudinal and transverse aperimenlal geometries 
respectively. 

transverse field 
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XI. Rehtion bemen P, ( t )  and the p + spin conelation function 

nom quantum mechanics we know that the depolarization function measured along 
the Q direction, P,(t), is the mean value of the time evolution of the Pauli operator 
U,: 

Pu(t) = Wla,(Ol?4 
where I$) is the wavefunction of the ensemble pt sample at the initial time. Using 
the expansion of I$) on the Hilbert base of this ensemble, I$) = E,, C,,ln), we can 
write 

Pu(t) = CkC, (m bU(~)1 4 = b IPau(t) l  4 = Tr {P,(t)I 
n,m n 

where p is the density operator, p,,, = CkC,,. At the initial time the p+ 
and the sample are independent. Therefore p = p,ps where p, and p. are 
the density operators of the p+ and the sample respectively. As usual we have 
p, = exp(-P'HJ/Tr{exp(-P7iH,)) with P = l / k B T .  'H, is the Hamiltonian oper- 
ator of the sample, including the effects of the muon electric charge on its neighbours 
but excluding the effem of its spin. p, depends on the experimental geometly. 

In a longitudinal experiment the p+ spin at the initial time is directed along the 
z-axis; see figure 2 This polarization can be descnhed by the pt density operator 
p, = $(l + U = )  where 1 is the identity operator. It follows that the depolarization 
function measured in this geometly is given by 

P,(t) = Tr {Plrpsur(t)} =Tr{ fsp , ,a , (O}  = $Tr{psUz~At)I  (11) 
if Tr{p,u,(t)} = 0. This hypothesis is valid most of the time because Tr{psu,(t)} 
is proportional to the mean value of the pt spin for an initially unpolarized pt beam 
(in this case p, = $ x 1 and Tr{pa,(t)} = iTr{psu3(t)]. The intensity of the 
magnetic field usually applied is too small to modify the p+ beam polarization (a 
magnetic field of 1 T corresponds to a temperature of 6.5 mK). 

Using the same method, it can be shown that the transverse depolarization funo 
tion is given by 

PAt)  = a Tr { f P = O = ( Q } .  (12) 
Equations (11) and (12) show that, for usual experimental conditions, P,(t)  is equal 
to the p+ spin correlation function. 

3.2. General expression for P,(t) obtained fom iferalion 

The previous equations indicate that to compute P,(t)  we need an expression for 
a,(t). For most practical cases, u,(i) can only be calculated approximately. In 
this paper we use an iterative procedure. We suppose that the Hamiltonian 'H which 
describes the pt sample system can be split into two parts: 7i = 'Ha + 'HI. In this 
section we do not have to specify how the splitting is made. We use the intermediate 
representation and define the following operators in this representation: 

u:(t) = exp (-i'H,t/6) u,(t)exp (i'Hat/6) (13) 

7iH;(t) = exp(-i7iHot/6)3tlexp(i7i,,t/~). (14) 
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Using the Heisenberg equation which describes the time evolution of a,(t) and 
equations (13) and (14) we get 

The solution of this equation can be written as 

a;(t) = a:(O)+ : l t d t '  [3Z;(t'),o;(O)] 

+ (ky Jd' dt' L'' dt" [E: (t ') ,  [3Z;(t"). u;(t")]] . 

The second and main hypothesis of the quantum computation of P,(t) is (the first 
neglected the modification of the polarization of the pi' beam by the applied mag- 
netic field) to set u;(t") = a;(O) to terminate the iteration. The validity of this 
approximation has been discussed in the past in connection with the Redfield theory 
(see, for example, Slichter (1963)). The results of this discussion are supported by 
OUT numerical work presented in section 4 which shows clearly that the approximation 
is quite good for describing either the initial part of a P,(t)  function (small time) in 
general or a P, (t) function in the motional narrowing limit for all t values. We now 
use the expression for a,(t) deduced from equations (13)-(15) with u;(t") = 0 ; ( 0 )  
to get formulae for the depolarization functions. 

3-3. Expression for h e  hngifudinal depolnrizalion function obfained from ireration 

From the expressions given earlier, we can write 

P,(t) = P!O'(t) + P!"(t) + l y ' ( t )  

with: 

and 
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Notice that the exponent (0) does not have the same meaning as in section 2 For the 
computation of the traces we need to specify KO and 71,. We set 71, = 71. + X,,+ 
where Xp,+ is the pt Zeeman Hamiltonian: 

P Dalmar de Rdotier and A Eouanc 

np,+ = -+ p U I u p  = 7, (%t + (8,)) * (16) 
E is the effective magnetic field vector at the p+ due to the spins of the sample. We 
have (A) = Tr,{p,A}. Notice that E does not contain any pLf spin operator. XS 
has been defined previously. XI which describes the magnetic interaction between 
the p t  spin and the spins in the sample can always be written as 71, = -&-fphu 6B 
where bB is the fluctuating part of B (B = 6B + (B)). 

get P;')(t), the following 
identity, which can be proved, for a well defined f function, by integration by parts, 
is useful 

It is easily shown that P$')(t) = 1 and P!')(t) = 0. 

l dt' l' dt" f(t' - t") = d r  ( t  - r)f(r). l 
After some algebra, using this identity, an expression for Pi2)( t )  can be derived: 

PL2)(t) = 2i d T ( t  - r )  [exp (iw,r) @+-(r) +exp (-iw,,r) @+(r)] 

where @ - @ ( T )  = 4[(6Ea(7)6B,) + (6B06B,(r))] is a symmetrized correlation 
function of the magnetic field fluctuations at the pt site. Notice that QaP(r )  = 
@@,( -T ) .  We have 

6Ba(r)  = exp(i71,T/h)6B,exp(-i'HH,r/h). 

In section 2 it has been shown for the longitudinal relaxation function, from the 
strong collision model, that if the pt diffuses sufficiently fast we can write 

1 

P,(t) = exp [-+At)] (18) 
where $,(t) can be obtained from equation (10). If we postulate that this form 
for P,( t )  is valid in general, +,(t) can be deduced from the quantum mechanical 
second-order iteration by identification of the expansion terms: 

+,(t) = d r ( t - 7 )  [exp( iw,r)@+_(T)+exp(- iw,r)@)_+(T)]  (19) 

or 

2 t  

0 

+ sin (w,.) P z y ( T )  - @y,(T) l }  ' (20) 
This result has already been given hy McMullen and Zaremba (1978). As our deriva- 
tion is systematic, it is easy to know where the approximations have been made. We 
have neglected the modification of the polarization of the p t  beam by the external 
magnetic field and the time evolution of o;(t"), (o;(t") = u:(O)). In addition we 
have supposed that the quantum calculation gives the first two terms of the expansion 
of the exponential depolarization function (equation (18)). Notice that P,( t )  given 
by equations (18)-(20) reduces to the NMR result if the characteristic time of the 
correlation functions, re, is much shorter than t and w,,T~ < 1 (Moriya 1962). The 
next subsection shows that our method leads to a new expression for P,(t). 
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3.4. Epresswn for the "verse  depolatiza&n function obtained fMM iteralion 
The method used to derive P,( t )  can be applied to the computation of the transverse 
depolarization function P=(t) .  The details are given in the appendix. As for P,(t), 
P,(t) can be written with the I+,-,.) or {z,y,z) Coordinates. In the I+,-,.) 

The expression for p(t) given above is valid when q ( t )  -zc 1. It seems that these 
expressions for P,(t) have never been published so far. If the terms proportional to 
l /w,  in the equations for + = ( 1 )  and p(1) are neglected (high-field approximation), 
we recover the NMR formulae (Moriya 1962, Heller 1976) and, as expected, $,(t) 
and +,(t) are related to each other: 

In the motional narrowing limit and in the high-field approximation the phase term, 
p(t), is proportional to 1 and therefore leads to a frequency sh i f t  We notice that this 
shift is influenced by spin-spin correlations (the @ ' q p ( ~ )  terms). 

The functional dependence of the ~ S R  depolarmtion functions on the spin cor- 
relation functions is such that symmetry arguments can be used to simplify this de- 
pendence. Group theory should be useful for that purpose. 

'Ib understand the effect of the different terms in the depolarization functions, in 
the next section, we will discuss the case of the p+ diffusing in a lattice of nuclear 
dipoles. 
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4. Application to the case of nuclear dipole systems 

The expressions for P,( t )  and P,(t) given in the previous section are general and 
do not depead on the type of interactions included in the sample Hamiltonian, X,, 
and the coupling Hamiltonian, 'Hl. The main hypothesis made in the course of the 
calculation of the functions is that the pt diffusion is sufficiently rapid. This will 
be. apparent when discussing the results which we are now going to derive. The p t  
depolarization is due to the interaction between the p+ spin and rhe fluctuations of 
the electronic and nuclear spins of the lattice. Here we do not consider the electronic 
spins. In addition we neglect the dipolar interaction between the nuclear spins which 
is weak. Therefore 'H, only includes the dipolar interaction between the fit and the 
localized nuclear spins. We have 
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-0 1 
'H, = Xdip = -- 2 [o$B, + 5 (o+6B- + a-6Bt) 

where 

6B- =(6Bt)'. (25) 

The previous equation is written taking into account the fact that for a nuclear system 
at a usual temperature, l i , a (~ )  = 61;+( 7). The geometrical factors are 

Ai = SD; cos 6'; sin 6'; B; = $ D; sin' 6'; 

and 

1 - 3 cos' ai Po r ;h  with D; = - 2 4 n 7 '  
Ci = D; 

r;, 6'; and pi are the distance, poiar and azimuthal angles of nucleus i relative to 
the p+. yi is the gyromagnetic ratio of I , .  

The ,U+ diffusion can be. introduced by proper terms in the pt sample system 
Hamiltonian. This quantum approach, which can describe the P,(t) functions when 
the pt diffuses coherently (McMullen and Zaremba 1978, Kondo 1986), leads to a 
complicated formalism. In most practical cases a semiclassical approach is sufficient. 
In this latter approach, as in NMR (Abragam 1961), the p+ coordinates are considered 
to be time-dependent and an ensemble average is performed over these coordinates. 

In the previous section we have shown that the P,(t) functions depend on mag- 
netic field correlation functions and therefore, using equation @), on terms such 
as 

Q, (Ti) 4p ('j) ( I i , a ( T ) I j , $ ( o ) )  (26) 
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where the q, and qp functions, which describe the geometry around the p t ,  can 
be deduced by identification using equation (U). We will neglect the case where a 
nuclear spin h nearest neighbour to two M+ localization sites. Thus we will take ri = 
r; in equation (26). As a result of the pt diffusion, ri is a stochastic function, V ; ( T ) .  

’&erefore we substitute the product function q, (r;) qs (r;) in equation (26) by iB 
average over the stochastic diffusion process, Ql, , (T)Q, ,$(0) .  Here to proceed further 
we write q, ,a(T)q, ,s(0)  = q , , , ( 0 ) q , , s ( O ) f v ( ~ )  and assume that the correlation 
function f , ( ~ )  takes the form 

f v ( T )  = eXP(-vbl) (27) 

where U is the p t  jump frequency. McMullen and Zaremba (1978) have shown 
that this form is a good approximation for a p t  hopping on a simple cubic lattice. 
Basically with this simple form the possibility for the fit to return to its original 
site is neglected. Therefore this approximation should break down if the number of 
nearest-neighbour interstitial sites is small. This could be the case for a p t  diffusing 
between octahedral or tetrahedral interstitial sites of a BCC lattice. 

Notice that, since at normal experimental temperatures ( p X J  < 1, the density 
operator of the nuclear spin system is very simple: 

N 
Ps = I/ ] II (21 ,  + 1). 

,=1 

We first discuss the longitudinal depolarization function. 

4.1. Smdy of the longimdinal depolarization function 

The P,(t) function can be computed €rom equations (18) and (19) and an expres- 
sion for the field correlation function @ - t ( ~ )  = @:-(T) .  Using the definition of 
this function, the expression of the dipolar magnetic field at the site and our 
prescription for taking the fit diffusion into account, some algebra gives 

N 

@ - + ( 7 ) =  f ” ( T ) C P * ( T )  
*=l 

with 
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Because of the approximation discussed after equation (26) ( p j  = ri )  we take 
As we neglect the interaction between the nuclear spins, we have 
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= exp (i7ii,+r/h) I;,, exp (-iXi,+T/h) 

where. 71; is the Hamiltonian of nuclear soin i. 

= j. 

In ozer to understand the physical mianing of OUI result we first assume that 
the nuclear spins feel only an external magnetic Beld. Therefore we have ‘Hi,+ = 
- k ~ ~ , + l ~ , ~  with wi,. = yi(l + Ki)B,, where 7; is the gyromagnetic ratio and Ki 
the Knight shift. Wth this simple Hamiltonian, &(r)  can be computed analytically 
using the identities exp(iol,)I* exp(-id,)  = exp(&ia)l*. After some algebra 
we get 

N 
+ , ( t ) = C w ; , , ~ ~ ( ~ ~ + i ) x  [ ~ ( i - 3 C O S z ~ i ) 2 g ~ ~ ~ W , - W i , ~ , t ~  

i=l  

+ 3 sinZBi cos’ Big?) (up, t) + $ sin‘ Big?) (w, + U;,+, . (30) 91 
w ~ , ~  = (p0/47r)7N7ih/r: is the dipolar pulsation for Ii. We have set 

g ? ) ( w , t ) = l  d T ( t -  r)f,(r)cos(wT). 
t 

Notice we have gt” (w, t )  = 11 - cos(wt)] /w’ in the quasi-static limit and 
gd”(w, t )  = (u t ) / (uZ  + w z )  in the motional narrowing limit. Equation (30) has 
already been published by Hayano ef a1 (1979). In zero field, wi,+ = w, = 0, we 
recover the function given in equation (10) with 

The fact that the quantum calculation gives the Abragam formula (with 2A2 instead 
of A’) does not seem to have been noticed before. 

The nuclear spins around the p+ larger than 4 feel an electric field gradient 
which is produced by the pt electric charge (Schenck 1985) and the lattice electric 
charges for nuclear spins with local symmetry less than cubic. Ti describe the effect 
of this electric field gradient, we add a new term to ZZ,+ which, for the case of a 
gradient due only to the p+, is simply written (Hartmann 1977) = f i ~ , , ~ [ ( n ~ .  
Zz)(n,. I , )  - I t ( l ,  -t 1)/3]. n, is the unit vector linking the p+ localization site to 
the lattice site of nucleus i. 

In order to appreciate the quantum effects on P,( t ) ,  in figure 3 we present 
two examples (zero field case and B,, = 30 G) of this function computed from 
three different models. The functions are calculated either from our second iteration 
formula or kom the strong collision model. The static functions of the latter model 
are either taken from Kubo-Tbyabe theory or are computed exactly using Celio’s 
method (1986). The result of the first and third models cannot be distinguished on 
the figure. We have supposed that the p+ is diffusing between the octahedral sites 
of metallic copper. We have taken the values given by Luke et ai (1991). We have 
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ngum 3. Emmples of the & a t  of the spin dynamics on the longitudinal relaxation 
function m the case of the N+ in metallic mpper. The aamples am given for 
mlum of lhe external magnetic field, B..t. ?he full C X N ~ S  present these functions 
given by OUT smnd-xder iteration 01 the strong mllision model wilh the m c t  static 
depolarization functions mmputed f" quantum mechanics (the WO ypes of cuwes 
cannot be distinguished) and the dotted cuwes Be resulu of the strong mllision model 
with the static functions given ty the K u b U y a b e  model. The parameters of the awes 
are bven m the main text 

ycu = 72.51 Mrad s-* T-I, Qcu = -0.205 barn, V,, = 0.441 x lo-" V 
and P = 1.81 8, Qcu is the nuclear quadrupole moment of Cu, V,, the zz 
component of the electric field gradient tensor at one of the six Cu nuclei and r 
the distance between the p t  and a Cu nucleus. We consider only the six nearest- 
neighbour Cu nuclei to the p t  because the exact computation of the static P,( t )  
functions can only be performed for this restricted number of nuclei. This leads to 
wq = -3.200 f i r 1 ,  wd = 0.110 ps-l and A = w d f i  = 0.381 MHz (the effect 
of the electric field gradient on A is taken into account approximately; see Schenck 
(1985)). We have chosen v = 3 MHz which should be roughly the value of the p+ 
jump frequency at room temperature. While the P,( t )  functions computed either 
from the strong collision model with the exact static functions or from our second 
iteration formula cannot be distinguished on the figure, the functions obtained from 
the strong collision model with the static functions computed according to Kubo- 
Toyabe are clearly different. The functions deduced from this latter method decrease 
more slowly. This can be understood intuitively. For example let us consider the 
structure of the iteration formula for the zero-field case. Although the Zeeman and 
the quadrupolar Hamiltonians do not have the same structure, it is certain that when 
the pt diffusion is sufficiently fast, terms such as 

are present; see equation (30). Thus P,(t) contains flipping terms which describe the 
spin dynamics. We fmd, for example, a term with the factor ./[U2 f (wc - w ~ , . ) ~ ]  
in the motional narrowing limit which, following well known NMR theory (see for 
example Slichter (1963)), describes the mutual spin flip of the p+ and Ii  spins. For 
Cu as the ratio w z / v 2  is not negligible when compared with one, w:/v2 = 1.22; 
this leads to an increase in the depolarization. Whereas the zero-field curve shown in 
figure 3 computed kom the iteration formula (or the strong collision model with the 
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exact static function) can be described by the strong collision model with the static 
function calculated according to Kubo-'Ibyabe if we take U = 2.8 MHg it is not 
possible to fit the E,,, = 30 G curve by this latter theory with A = 0.381 MHz. 
The closest curve obtained with this A wlue gives v = 2.4 MHz Therefore, at the 
best, an experimental spectrum analysed with this model leads to an under-estimation 
of the jump frequency. In addition the analysis of the zero- and longitudinal-field 
data are not consistent. 

A depolarization function computed from the iteration formula must be a good 
approximation at least when the p+ jumping rate is large enough. The fact that the 
strong collision model with the exact static function and the iteration formula give the 
same result at U = 3 MHz means that all the spin dynamics is already contained in 
the exact static function. The diffusion described by the strong collision model does 
not add a new spin dynamics mechanism. It only modifies the properties of it. This 
can be understood because the physicat hypothesis which we have made to compute 
P, ( t )  from the iteration equation are the Same as the ones leading to the integral 
equation of the strong collision model. The Kubo-Toyabe method does not describe 
the physics in detail: it neglects the nuclear spin dynamics which is essentiaL The 
strong collision model gives a good description (within its own hypothesis; basically 
the correlations between the nuclear spins are neglected) if the right static function 
is used. 
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Figure 4 Study of the validity of the semnd-order iteration. The curvcs are drawn 
for the case of a p+ m metallic mpper. The full cumcs present the m u l l s  of our 
second-order iteration. The dotted mwes show the prediclion of the strong mllision 
model with the static functions mmputed [mm quantum mechanics. v ir the p+ jump 
r a k  

Up to now we do not know what is the smallest value of the jumping rate for 
which the iteration formula can be used to describe the p+ diffusion in Cu. In 
figure 4 we present P,(l) computed either from the strong collision model with the 
exact static function or &om the second-order iteration. It is quite clear that even 
for v = 1 MHz at zero field the iteration is a reasonable approximation. This fact 
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is interesting because it means that our iteration formula can be used to describe 
P,( t )  even for a relatively slowly diffusing p+. Thus, for most practical cases, 
the function can be obtained with a modest computing time. The structure of the 
iteration formula (see equation (30) for an example) clearly indicates that the spin 
dynamics of the nuclear spins is important. This probably explains why the exact 
static depolarization Wction is different from the prediition of Kubo and lbyabe for 
the longitudinal geomeay. 

The results just described could lead to the idea that the second-order iteration 
gives reliable results only in the motional narrowing limit. This is not so. It gives a 
good picture of the initial part of Ps(t)  in the whole range of U. Fbr example, when 
an electric field gradient and/or a magnetic field acts on the lattice nuclei, the iteration 
result has a less restricted time range validity compared with the usual parabola 
obtained from k n  Vleck’s method because of the effect of the non-secular terms. 
 his is dearly seen if one 1001~s at the initial part of the numerically exact ~ , ’ ” ( t )  
function for the case of a static p+ in Cu at zero field whereas the parabola is a good 
approximation only up to 0.7 ps, the iteration formula gives a fair approximation up 
to 2 ps. As has already been mentioned, this is in contrast to what is seen for the 
case of negligible electric field gradients and external field. 'Ibis is probably related 
to the fact that the longitudinal Abragam formula (equation (10) derived using the 
distribution method) is a good approximation (if U is large enough) of the quantum 
result for the zero-field case only if no gradient acts on !&e nuclei. 

4.2. Srudy of the Iransverse depolnrization function 
The P,(t) function can be computed from equations (21) and (22) with expressions 
for @ - + ( T )  = @ ; - ( T ) ,  aZz(7) and @+,.(T) = W-(T) .  @-+(r)  is given by 
equation (223). The other two field correlation functions can be determined using the 
expression of the dipolar magnetic field at the p t  site and our prescription for taking 
the p t  diffusion into account We have 
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In order to understand our result we first assume that the nuclear spins feel only an 
external magnetic field. After some algebra we get 
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N 

+,(t) = $w)+~4&(& +i)~~(~,,w~,~.t) 
i=l 

where 

vi ( W p , W i , + , t )  = a(i  1 - 3 C o s ~ e i ) 2 g ~ ) ( o , t ) + 3 s i n z e i ~ o s 2 e i g ~ ) ( ~ i , ~ r ~ )  

and 

where 

zWi ( W p r W i , r ,  t )  = + (I - 3 C O S z  ei) 9, (4 (w, - wi,=,  1 )  

+3sin2eicos’eig$4 (w,,t) + %sin4eigp) (w, + q + , t )  

3 sin4 ei - 2 sin’ ei h(c) 
- cos (21pi) “.w,(Wi,.. , t )  

W P  

3 COS (~(0;) COS’ ei sin’ ei 
* P  

- k f ) ( w , ,  i ) .  

We have defined 

&) (w , t )  = d r ( t - r ) f v ( r ) s i n ( w r )  

hls!,J(w,t) = d r  sin ( W , T ) C O S ( W T ) ~ ~ ( T )  

ht!+ (a, t )  = L t d r  cos (w,r) c o s ( w r ) f , ( r )  

k e ) ( w , t )  = dr sin(wr)f,(r)  

k:)(w, t )  =i d r  C O S ( W T ) ~ , ( T ) .  

l 
Lt 

Jd’ 
t 

(35) 

These formulae have never been published. The expression for +=(i) given by 
Hayano e[ a1 (1979) is identical to our expression if our two terms proportional to 
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l / w ,  are neglected. In the high-field approximation the gF) (w , l )  and gl"'(w,t) 
functions go to zero. Thus we recover, as expected, the transverse Abragam formula 
(equation (9)) with 

I .  

A* = Cw!,dri(ri + 1) g (1 - 3 ~ 0 s * e ~ ) ~ .  
i= l  

In order to test the effect of the spin dynamics and the terms proportional to l /w,  
on P,(t), we present in figure 5 an example of this function computed with three 
different approximations. One curve (full) has been calculated using our complete 
second-order iteration formula. A computation of P,(i) has been made with this 
formula but omitting the l/w, terms. The results of these two computations cannot 
be distinguished in figure 5. Therefore the l /w ,  terms have no effect for the case 
considered. A numerical study shows that the l /w, t e m  have a small effect if the 
l . ~ +  diffusion is not too fast (Y = 1 MHz). The second curve (dotted) is the result of 
the transverse Abragam formula (equation (9)) with A = 0.234 MHz. This mlue has 
been calculated using the expression for A just given. We have supposed that the p+ 
feels the effect of only two Cu nuclear magnetic moments. One is located at 1.5 8, 
on the x-axis and the other at 2 8, on the y-axis. Such a non-symmetric environment 
has been chosen in order to detect the effect of the l / w ,  terms. When the p+ is in 
a highly symmetric environment, these terms do not contribute to P,(t). This can 
be seen from equation (24). A field of U) G (Be,, > 5(A/7,) = 13.7 G) is applied 
along the z-axis. We take v = 3 MHz and suppose that the nuclei do not feel any 
electric Eeld gradient. Figure 5 clearly shows that whereas the terms proportional 
to l/w, have no effect, the spin dynamics (which is described by the terms which 
contain w;,+ and up) has a strong influence on the depolarization function. Notice 
that a frequency shift is present 

0 2 4 6 8 10 12 14 16 
lime 0.j) 

@are 5. Example of the &em of the spin dynamics on the LLansveme depolarization 
function for a small external magnetic field. me full cuwe gives the m u l t  of our 
secondader iteration. The dotted a w e  shows the prediction of the Abragam formula. 
The exlemal applied magnetic field is Be,, = 20 G. The other parameters of the mrves 
are given in the main text. 

In the case of the longitudinal depolarization function we have indicated that the 
second-order iteration is a good approximation if the p+ diffusion is sufficiently rapid 
(and in general if one is only interested in the initial part of the function). We may 
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expect for the transverse depolarization function that this approximation is tolerable 
even for a static p+ if one is not interested in too large a time. This hypothesis is 
supported by two facts. First the P=(l)  functions described by the Markov process 
with the static function given by equation (7) (the case of a static pt is included 
in the framework of the stochastic model) and the "verse Abragam formula are 
never very different (Kehr er nl 1978). Second when P,(t) can be easily computed 
numerically using equaticn (12) as, for example, in the case of a static pt interacting 
with only one nucleus, the data can be reasonably described by our iteration formula 
if t 5 9 ws. However more work is needed to check the validity of this hypothesis. 
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Bigum 6 EBect of lhe spin dynamier on the flansverse depolarization function in the 
case of a static p+ in metallic mpper. Tb avoid the @ble effect of the level crossing 
we neglect the electric field'gradienf due lo the p + ,  The full a w e  gives the result of 
our semnd-order ileration. ?he dotled "e shows the prediction of equation (7). The 
external applied magnetic Aeld is Be,, = 100 0. 

Before finishing this section we would like to point out an interesting result which 
should be checked out by an exact calculation of P,(t) .  In figure 6 we present P,(t)  
computed with our iteration formula (full curve) for the case of a static w +  in Cu 
neglecting the electric field gradient due to the p t .  An external field of 100 G is 
applied along the [llO] direction. The dotted curve is the result of equation (7). The 
two curves are clearly different The curve computed from the second-order iteration 
formula does not have a Gaussian envelope. Thus for this case the spin dynamics 
st i l l  influences the depolarization function at Be,, = 100 G. We point out that even 
at 300 G there is still a difference between the classical and quantum curves. On 
the other hand, the same computation when Bext is along the [loo] direction gives 
a P,( l )  function which cannot be distinguished from the result of equation (7). A 
close look at equation (35) shows that this is expected because Bi is either 0, n / 2  
or n. n u s  the terms proportiona~ to sin2 B , C O S Z B ;  do not contribute m ~ ~ ( t ) .  III 
addition the other terms, except the one leading to the Abragam formula (first term of 
the 1); function), are negligible because B,,, is large. Therefore the inRuence of the 
spin dynamics on the depolarization functions depends strongly on the geometrical 
conditions. 

5. Summary, possible extenslons and conclusions 

In Sis paper we have discussed in some detail the stochastic model (with the static 
depolarization functions given by the distribution method) which is usually used to 
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describe the ~ S R  data. We have noticed that a renormalized Abragam formula is a 
good approximation of the longitudinal depolarization function, P,( t ) ,  when the pt 
diffusion is sufficiently rapid. We have determined at which value of the external field 
the simple Gaussian approximation to the static transverse depolarization function is 
valid. 

The main concern of this work has been the quantum computation of the depo- 
larization functions using a second-order iterative method. We have found formulae 
which are extensions of the ones used in NMR 

We have applied these formulae to compute the depolarization functions for a 
p+ difFusing in a nuclear dipole lattice. Our results are an extension of the ones 
given by Hayano et a2 (1979). Using our second-order formula, we have computed 
the depolarization functions for the two experimental geometries, in different physical 
situations. Our results show that it is necessary to take into account the spin dynamics 
to describe the depolarization functions at low fields properly. 

We have shown that the exact static depolarization function contains all the spin 
dynamics. The diffusion does not add a new spin dynamics mechanism. This fact 
shows that it is important to describe the spin dynamics for a static p+ properly 
before trying to include the effect of diffusion on the depolarization function. 

Our results represent the fust step towards a full description of the depolarization 
functions for the case of a p t  diffusing sufficiently fast in a nuclear dipole system. 
In order to reach a completely satisfactory description, the two hypotheses which 
we have made should be studied. We have neglected the nuclear spin correlations 
(equation (26)) which could be important if the pLf jumps between sites which have 
common nuclear spins as nearest neighbours. In addition we have chosen a phe- 
nomenological Eorm for the coaelation function, f , (r) ,  which takes into account the 
pt diffusion (equation (27)). f , (r)  depends on the lattice structure and the p t  
locali t ion site. A numerical calculation of this function should be possible for each 
physical case. The result could be introduced in equations (28), (33) and (34) to 
compute the depolarization functions. 

Within the hypotheses of the strong collision model a pSR depolarization function 
can be computed in a reliable way if the related exact static function is used. This 
always requires a large amount of mu (central processing unit) time. For many 
physically interesting cases the calculation cannot even be performed palmas de 
Reotier er at 1990) because this time would be too long. We now suggest a new 
method which, as in Celio's method (1986), uses the Trotter formula but in a different 
way. Instead of decomposing the total Hamiltonian, 31, as the sum of Hamiltonians 
for each pt spin-nuclear spin pair, a more fruitful method could be to wite 31t = 
N(31r)  with 1 = N r .  This sliding of the time should lead with the help of the %otter 
formula to a path representation of the depolarization function. The advantage of 
the proposed method over the one used by Celio could be the possibility of finding a 
semiclassical approach for the depolarization function. (Up to now only two methods 
exist. We have either the fully quantum or the classical distribution method.) 

In this paper we have considered that only one source of depolarization is present. 
But when two sources act to depolarize the p+ as in MnSi (Kadono et af 199ob), 
the resultant depolarization function is the product of the function describing the 
fluctuations of the electronic magnetism by the function taking into account the de- 
polarization due to the 55Mn magnetic moments. Then to deduce reliable information 
on the electronic fluctuations from the experimental data, it is important to describe 
the second source of depolarization properly. The application of our results could 
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help to resolve part of the present inconsistency in the analysis of the data. 
In conclusion we have shown that to get a consistent analysis of the pt diffusion 

data in a nuclear spin lattice, it is important to take into account the spin dynamics. 
A numerical comparison between the results of the stmng collision model with the 
exact static function and our formula for the longitudinal depolarization in the case 
of Cu has allowed us to study the validity of the iteration. We have found that it is 
surprisingly good. ?he advantage of using our formula over the strong collision model 
is while the mmputing time needed to calculate a depolarization function using our 
formula is only ahout 1 min, the computation With the second model requires, to get 
a reliable result, many hours of CPU (on a VAX Ssoo). Our result suggests that the 
difference between a numerically exact static depolarization function and the related 
function deduced from the distribution method is due to the neglect of the nuclear 
spin dynamics by the latter method. Clearly more work is needed to understand the 
effect of the spin dynamics. 
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Note odded m poof Recently it has ben shown (Dalmas de IGotier P, Yaouanc A and Meshkov S V 
1592 phvs Len. 16U 206) that it is passible lo mmpute aactly @etter lhan 1%) a static P, ( t )  function 
wing a Monte Carlo method with dassical mechanics including the effect of the spin dynamic3 Y the 
dimension of the Hilbes space is large enough. So hr, this method is limited to the case where no 
elccvic field gradient am on the nuclei. ?he CPU lime needed is imponant. ?bur our ilerative pmmiure 
is still valuable. In addition it mn bc used even if the Hilbes space is small. 

Appendix. Sketch of the derivation of P,(t) 

We follow the method presented in section 3.1 for the derivation of P,(t). The 
computation of P,(t) up to the second order in the iteration gives this hnction as 
the sum of three terms. The first two terms are easily computed. We have 

PF’(1) = cos (w,1) PL”(t) = 0. (4 

m e  computation of pi2)(t) is more involved. m e  iteration gives 

@)(t)  = $ (A- l d t ’ l ’  dl”  Tr {p,u, exp (iWot/tr) Aexp (-iRol/h)) 

with 



1' 2 t - - c o s ( w , t ) l d t ' L  -6 d t " & , ( t ' , t " ) - I r s i n ( w , t ) L  d r ( t - r )  
2 2 

2 1' 

-%sin (w,t)fdt '/  dt"&,(t',t") 
2 0 0 

where 

kJt ' , t  " ) - - cos [w,(t'+ t")] [@*,(t' - t") - @*=(t'- t")] 
- sin [w,(t' + t")] [Qru(t' - t") + QJt' - t")] . 

The ks function is the kc function with the substitution of the EOS and sin functions 
by the sin and --cos functions respectively. The identity given by equation (17) has 
been used. The expression given here can be simplified with the help of the following 
identity 

1 dt' Jd" dt" exp [iw,(t' + t")] @(t' - t") 

= -1 1 '  (exp [ iw,(Zt- .r)]  - exp( iw ,~ )}@(r )d7  
2iw, 

which can be proved by integration by parts. In addition taking into account the fact 
that @.,@(t) is a real function when {a,@} = {z,y,r}, we finally obtain 
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Keeping only the first terms of its expansion we write 

P &has de Reolipr and A Yaouanc 

This formula is valid if ~ ( t )  1. The identitication term by term of equation (A3) 
With equations (Al) and (AZ) leads to the expressions for n(t), $,(t) and v(t)  
given in the main texL 
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