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Quantum calculation of the muon depolarization fanction:
effect of spin dynamics in nuclear dipole systems

P Dalmas de Réotiert and A Yaouanc
Centre d'Etudes Nucléaires, DRFMC/SPSMS/LIH 85X, F-38041 Grenoble Cédex, France

Received 17 October 1991

Abstract. We have derived formal expressions for the positive muon depolarization func-
tions using an iterative procedure both for the longitudinal and transverse experimental
geometries. They are valid at least in the motional narrowing limit and at smali time,
We have used our formal expressions to study the depolarization functions for a muon
diffusing in a lattice of nuclear dipoles neglecting the possibility of the muon returning to
its original localization site. This work indicates that the effect of the spin dynamics on
the depolarization functions is important at low fields for both geometries. In the case
of the longitudinal geometry we have shown that our second-order iteration formula and
the strong collision model with the numerically exact static function give the same result
when the muon jumping rate is large emough. This has two important consequences:
(i) when the mmon jumping rate is sufficiently large it is possible to calculate the whole
depolarization function with a modest numerical effort using our iterative formula; and
(ii) the fact that the two methods give the same result in the fast diffusing limit shows
that the strong collision model with the exact static function contains all the dynamics;
the spin-lattice relaxation (T} process) is included.

1. Introduction

The diffusion of a light interstitial particle such as a positive muon, u+, is a fascinating
subject in solid state physics. The quantum effects are important even at relatively
high temperature (100 K). For aluminium, in the low-temperature region, the ut
diffusion constant is much larger than expected if only the lowest order of the muon—
electron interaction is taken into account (Kehr et a/ 1982). However, as shown by
Kondo (1986) and Yamada (1984), if the effect of the higher-order terms of this
interaction is included, the agreement between theory and experiment is much better.

The information obtained on the u* diffusion properties from positive muon
spectroscopy (uSR) is extracted from the analysis of the measured pSR depolarization
functions, P, (%) (o refers to the direction of the measurement; see later), and is
model dependent; see Chappert and Grynszpan (1984), Schenck (1985) and Chappert
and Yaouanc (1986). Here we will only consider compounds for which the electronic
magnetic moments have no effect on F,(t) as most of the experimental work on
diffusion has been performed on such compounds. In this case the depolarization
of the p* spin is due to the magnetic field produced at the pt site by the nuclear
dipoles of the lattice.

t Current address: Hahn-Meitner-Institut Berlin, D-1000 Berlin 39, Federal Republic of Germany.
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Usually a dynamical P, (%) function is computed in terms of a depolarization
function for a static y*, Pg,n)(t), using the strong collision model (Kehr et a/ 1978,

Hayano et al 1979). A common practice for the calculation of Pﬁo)(t) is to express
it as an average of the ut spin over the distribution function of the magnetic field at
the u* site. Whereas the u* spin dyramics js described by the Larmor equation, the
nuclear spin dynamics due to the magnetic field created by the u+ at the nuclear sites
is neglected, The parameter (only one parameter for a ¥ site of cubic symmetry)
of the distribution function is estimated from the second moment of the interaction
Hamiltonian between the u% magnetic moment and the magnetic moment of the
lattice nuclei (Van Vleck’s method). Using quantum mechanics it has been shown

numerically that this method does not describe P&D)(t) in detail (Celio and Meier
1983, Celio 1986). It can even lead to a wrong estimate of the p+ diffusion constant.
In this paper we present an iterative method to compute the P, (t) functions which
is valid at least in the motional narrowing limit. Although it is not only restricted to
the case of depolarization due to nuclear dipole moments, in this paper we will only
consider this source of depolarization. We will show for the longitudinal geometry,
in the case of a ut diffusing sufficiently rapidly, that this method leads to a P, (1)
function which is the same as the one computed from the strong collision model
with P,E“)(t) calculated from quantum mechanics. Therefore the strong collision
model with this P{% (t) function contains all the spin dynamics. On the other hand

the method which uses the strong collision model with P:(.u)(t) deduced from the
static distribution function method gives a bad approximation of F,(t). Our work
shows that it is important for a reliable description of P, (t) in the two experimental
geometries to take the spin dynamics into account.

Recently experiments designed to study in great detail the u* diffusion properties
have been reported for Al (Kadono et af 1990a) and Cu (Luke e af 1991). Kadono et
al (1990b) have discussed results obtained on the weak ferromagnet MnSi for which
the depolarization due to the °*Mn nuclei is not negligible and should, therefore, be
described properly if one wants to extract reliable information on the electronic spin
dynamics in this compound. In all these cases our theoretical results should help to
give a consistent picture of the pSR data.

The organization of this paper is as follows. In section 2 we briefly review the
method of computation of the depolarization functions using the stochastic theory
and discuss its validity. The formal quantum expressions for the functions, valid at
least in the motional narrowing limit, are established in section 3. No hypothesis
concerning the source of depolarization is made. In section 4 we discuss in some
detail the case of a p+ diffusing in a lattice of nuclear dipoles. A comparison of the
results from the second-order iteration with the strong collision model for the two
types of static depolarization functions (classical and quantum mechanics) is made.
Section 5 contains a summary, comments on possible extensions and the conclusions.

2. The depolarization functions from the stochastic theory

The stochastic theory of dynamical processes was first used to compute F,(¢) for the
transverse and longitudinal experimental geometries by Kehr er o/ (1978) and Hayano
et al (1979) respectively. Here we present a short review of their results to define the
parameters and discuss the approximations made within this theory. The magnetic
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field dynamics, which is due, in this theory, to the p* diffusion and/or the interaction
between the nuclear dipoles which are at the origin of the field distribution at the
pt site, is described by the ‘strong collision’ model (Kubo 1954). For clarity we will
use the language of diffusion. A characteristic of this model is that the depolarization
function for a static p¥, P&O)(t), is needed. This last function can be computed
directly for simple cases using quantum mechanics (Celio 1986). But because of
numerical difficulties, it is always useful to use a classical mechanics method with a

static distribution. 'We first describe P,S,o)(t) obtained from this method and then
consider the case of a diffusing p*.

2.1. Depolarization functions for a static mion

By definition at the initial time, ¢ = 0, the u* spin is directed along the z-axis. The
polarization at a later time in the « direction is given by

PO = [ 228 p(B)an (1)

where S is the muon spin (S = 1), S,(¢) its projection on the o direction at time
t and D(B) the static distribution function of the magnetic field B at the ut site.
The exponent (0) specifies that we are dealing with a depolarization function for a
static p*. Its significance will be clarified when discussing the effect of diffusion.
In a so-called transverse measurement, an external magnetic field 5, is applied
perpendicular to the z-axis (the z-axis for example) and P1) (or P,f,ﬂ)(t)) is
recorded. In a longitudinal experiment a field can be applied along the z-axis during
the measurement of P,,So)( t) but sometimes no field is applied.

For simplicity we suppose that the field distribution at the ut site due to the
lattice magnetic moments is isotropic (the second moments along the z-, y- and »-
axes are the same). This is the case for a ut in metallic copper and aluminium. A
generalization for an anisotropic distribution can easily be made (Dalmas de Réotier
1950). In addition we will hypothesise that the distribution is Gaussian.

With these hypotheses, when no magnetic field is applied, the field distribution
function is given by

~y 3 ,.7,2 BZ
D(B)dB = (\/2_“,3) exp (— ;Az ) B%sinf#dBdede )
ki3

where «, is the u* gyromagnetic ratio, A%/~2 the second moment of the components
of the magnetic field distribution, 6 and ¢ the polar and azimuthal angles of the
magnetic field vector at the p* site. The 5, (t) component of the p* spin is obtained
from the solution of the Larmor equation:

S,(t} = 8 [cos® 6 + sin® B cos (v, Bt)] . (3)

The Kubo-Toyabe function (Kubo and Toyabe 1966) is simply derived using equa-
tions (1), (2) and (3):

PO =

ol

+

_A242
%— (1-—/_\2.*,2) exp( Azt ) @



4536 P Dalmas de Réotier and A Yaouanc

For this experimental geometry PS”(t) = 0 and P{®(¢) = 0. Hayano et al (1979)
give an expression for Pfo)(t) in the case of an external field applied along the z-axis.

For the transverse geometry the spherical coordinates are not practical. In Carte-
sian coordinates, with an external field B,,, applied along the x-axis, the distribution
can be written as

3 2 2 2R
_ 'Yy __1"# (Bext - B:c) _‘V;.:By
D(B)dB = (ﬁ;ﬁ) exp ( SAZ exp SAZ

2B2
X exp (-""‘ ) dB,dB,dB,. | )

2A2

A closed form for P{”)(t) can be given if the intensity of B,,, is sufficiently large,
B, > Afv,. Then as the resultant magnetic field at the u* site is, to a good
approximation, directed only along the z-axis, the S,(¢) component of the ut spin
deduced from the Larmor equation is

8,(t) = Scos (v, B,1). ©)
In this approximation the transverse depolarization function computed using equa-
tions (1}, (5) and (6) is given by

242

PO(t) = exp (_A t ) cos (7, Bot) - (7

The validity of the approximation made to derive equation (7), B, > A/v,,

has been investigated by comparing P,fo)(t) integrated numerically with the function
given in equation (7). The numerical integration is defined by equation (1) with
S,(t) deduced from the Larmor equation (equation (3) in Cartesian coordinates)
and D{B) given by equation (5). Up to now the maximum measured A value for a
nuclear dipole lattice in the transverse ficld geometry seems to be 0.40 MHz (Schenck
1985), ie. A /v, = 4.7 G. In practice the smallest transverse external magnetic field
is about 10 G, This gives B,,, = 2.1{A/v,). In figure 1 we have drawn the
two functions calculated with B,,, = 5(A/v,) and B, = 2(A/+,) respectively.
The two plots show that while the analytical formula (equation (7)) is still a fair
approximation at B,,, = 5(A/v,), it completely breaks down at lower fields. This

is not surprising because at zero field P,fo)(t) is given by the Kubo—Toyabe function.

Generally the second moment of the field distribution for the two experimental
geometries is computed according io Van Vieck. This means that for the longitudinal
and transverse case A? js taken as

2 1

EEETI {[H’dip'-'sz] [Sz’Hiiip]} and WTT {[H:!ip?sa:] [Sm’H:iip]}
respectively. 5, is the secular part of the dipolar Hamiltonian which describes
the interaction between the u* magnetic moment and the lattice nuclear magnetic
moments. d is the dimension of the Hilbert space of the u+ sample system. The
difference of a factor of two is related to the fact that in the longitudinal geometry the
depolarization is produced by the two components of the field distribution perpen-
dicular to the z-axis whereas for the transverse case only the component parallel to
the direction of the applied field is responsible for the depolarization. In sections 4.1
and 4.2 we will show that A2 can be obtained directly as a result of the iteration
computation. Then the validity of the secular approximation can be gauged.
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Figure 1. Comparison between two forms of the static transverse depolarization function
deduced from the distribution method. For each figure, the full curve presenis the

result of the numerical integration {equations (1), (3) and (5)) and the dotted curve the
approximate analytical function given in equation (7); see main text.

2.2, Depolarization functions for a diffusing muon

We now consider the case where the field distribution at the p¥ is time-dependent.
Foliowing Kehr et al (1978) we describe it by the ‘strong collision’ model introduced
by Kubo (1954) for nuclear magnetic resonance (NMR). It supposes that the local
field at the pt+ has a certain value for a given time interval. At a later time it takes
a new value not correlated to the first one (Markov process). During its life in the
sample, the ut jumps ! times and can see ! different fields at its localization sites.
Therefore the P, (t) function which takes into account the p* diffusion is given by

+00
P(t) =Y Ry(%)
=0

where R;(t) is the product of the depolarization function in the case of { jumps by
the probability that the p% has jumped [ times during the time interval [0,1]. For
example we have Ry(t) = Pf,,")(t) exp(—vt) where v is the jump frequency. The
same model gives

Ri(t) = ([ 4t Pra(t = ) explov(t = )l Byt exp(-0t)

L¥

where P, (t) describes the evolution of the projection (given by the Larmor equation)
of the u* spin on the o direction in the time interval [0,¢]. During this time the
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p* spin sees one field, B;, which belongs to the field distribution. The hypothesis of
the strong collision model allows the different terms of R,(%) to be decoupled and
therefore to be written as

R, (1) = u/u dt’ Ry(t - t')Ry(t').

Using the same method, an expression for R, ,(t) can be derived. It is then possible
to deduce the following integral equation for P_(1):

P, (t) = PO)(1) exp(—vt) + uftdt’ P_(t— ) PO (#') exp(—vt'). ®)
1]

The derivation of the equation for P, () is independent of the shape of the P§,°)(t)
function. It can be computed either from classical or quantum mechanics. This fact
will be used in section 4. Therefore P,(t) given by equation (8) may look quite
general. But it should be realized that two physical hypotheses have been made. First
we have neglected the possibility of the % returning to its original site after a jump.
This is explicit from the jump frequency dependence we have taken, for example,
for Ry(t). The second hypothesis has been made when we have supposed that the
fields seen by the u* in the different sites are independent of each other. This
approximation may not be valid if the u* jumps between sites which share common
neighbours.

Equation (8) has been derived using the language of the magnetic field distribu-
tion. Therefore one could think that it is not general because it may not take into
account the whole spin dynamics (the spin-lattice relaxation in particular). This is
not true if, for the computation of the static depolarization function, the effect of the
spin dynamics is included. This fact is supported by the numerical comparison made
in ‘section 4 between the results of the strong collision model with the exact static
depolarization function and our second-order iteration.

Using the Laplace transform of P, (t), P,(s), it is possible to study the asymp-
totic behaviour of F,(t) valid when /A » 1. For the transverse geometry, when
By > A/v,, we get (we do not take into account the cos(vy, B,,,t) term because
it is not modified by the u* diffusion)

P(s)_—( +A2)_.lﬁ_3_;ﬂ_2

s2 v s+t
The inverse Laplace transform of this latter function is

AZ AT A
These are the first two terms of the expansion of the Abragam formula

2
P,(t) = exp {—%{[cos(—-fvt) -1+ vt]} cos(y, By t) (9

where we have included the cos{vy, B,,,t) for completeness. The Abragam formula
is usually derived from a Gausswn—Markovmn theory (Abragam 1961} whereas P, (1)
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given by equation (8) is the result of a random-walk model. Kehr et al (1978) have
shown numerically the remarkable result that P,(t) deduced from the Abragam
formula and the integral equation with P,(O)(t) given by equation (7) are very similar
even when » is small ie. when the ut is quasi-static.

A study of the asymptotic expansion of P,(t) in zero field by the same method
shows that when the jump rate is sufficiently large we have

P,(t) =exp {-—2?—:[exp(—vt) -1+ vt]} . (10)

This is the Abragam formula with the substitution A2 — 2A2 and with B,,, = 0.
The factor two is again related to the fact that two components of the magnetic field
at the ut site depolarize the % spin in the longitudinal geometry. This approximate
form, which seems to have been overlooked up to now, is in fact excellent when
the diffusion is sufficiently fast: the difference between the P,(£) functions calculated
from equations (8) and (4) and the Abragam formula with the mentioned substitution
is less than 1% if v/A > 3. In the extreme motional narrowing limit the latter
formula reduces to exp [-(2A%/v)t]. We will see in the next section that the pre-
asymptotic Abragam form (equation (10)) is very useful to understand the quantum
mechanical results. In addition, when this form can be used, the computing time for
P_(t) is notably reduced.

3. Formal quantum expressions of the depolarization functions obtained from itera-
tion :

In this section we first discuss the relation between P, (t) and the pt spin operators.
We then derive, using a second-order iterative procedure, a general expression for
P_(t). In the next subsections this expression is used to deduce formulae for the
depolarization function for the longitudinal and transverse geometries.

For practical reasons it is useful to change the reference frame. In fact, from
now on, we will use two reference frames, one for each experimental geometry. In
figure 2 we define these two coordinate systems.

/—\ detector ' z
Bey
]
2 ¥
n+
ated
X
L\_ detector
zere or longitudinal field transverse field

Figure 2. Reference frames used for the quantum computation {from section 3 on) of
the depolarization functions in the longitudinal and transverse experimental geometries

respectively.
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3.1. Relation between P, (t) and the u't spin correlation function

From guantum mechanics we know that the depolarization function measured along
the « direction, P, (t), is the mean value of the time evolution of the Pauli operator

Tyt

Fo(t) = (¢ lo, (1))

where |1/} is the wavefunction of the ensemble p* sample at the initial time. Using
the expansion of [} on the Hilbert base of this ensemble, |¢) =}, C, |n), we can
write

Py(t) =3 CrCyimlo,(t)n) = 3" (n oo, (1) n) = Tr {po,(1)}
n,m =

where p is the density operator, p, .. = C; C,. At the initial time the p*
and the sample are independent. Therefore p = p,p, where p, and p, are
the density operators of the u* and the sample respectively. As usual we have
p, = exp(—pH,) [ Tr{exp(—BH,)} with 38 = 1/kyT. H, is the Hamiltonian oper-
ator of the sample, including the effects of the muon electric charge on its neighbours
but excluding the effects of its spin. p, depends on the experimental geometry.

In a longitudinal experiment the % spin at the initial time is directed along the
z-axis; see figure 2. This polarization can be described by the p* density operator
p, = 3(1+ ¢,) where 1is the identity operator. It follows that the depolarization
function measured in this geometry is given by

P (1) =Tr{p,0,0,(1)} = Tr{p,p,0.(1)} = : Tr {p,0,0.(2)} (11)

if Tr{p,o,(t}} = 0. This hypothesis is valid most of the time because Tr{p,o,{t)}
is proportional to the mean value of the p* spin for an initially unpolarized p* beam
(in this case p, = 3 x 1 and Tr{po (1)} = L Tr{p,c,(t)}. The intensity of the
magnetic field usually applied is too small to modify the p* beam polarization (a
magnetic field of 1 T corresponds to a temperature of 6.5 mK).

Using the same method, it can be shown that the transverse depolarization func-
tion is given by

P.(t) = 1Tr{p,0,0,(t)}. (12)

Equations (11) and (12) show that, for usual experimental conditions, P, (t) is equal
to the u* spin correlation function,
3.2. General expression for P, (1) obtained from iteration

The previous equations indicate that to compute P, (f) we need an expression for
a,(t). For most practical cases, o,(t) can only be calculated approximately. In
this paper we use an iterative procedure. We suppose that the Hamiltonian X which
describes the ut sample system can be split into two parts: H = X, + #,. In this
section we do not have to specify how the splitting is made. We use the intermediate
representation and define the following operators in this representation:

oo (t) = exp (—iHyt/R) o, (t) exp (iHyt/h) (13)
HI(t) = exp (—iHyt/5) Hy exp (iHot/h) . (14)
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Using the Heisenberg equation which describes the time evolution of o, (t) and
equations (13) and (14) we get

doj (1) _
=) L p ), o200

The solution of this equation can be written as
L " i t I L I L]
o2t = o (0)+ 5 [ 8 1r52), 02(0)]

( ) _/ dt’jt’dt” (HI(), [HI(E), a5 (2] (15)

The second and main hypothesis of the quantum computation of P,(t) is (the first
neglected the modification of the polarization of the u+ beam by the applied mag-
netic field) to set o (") = o, (0) to terminate the iteration, The validity of this
approximation has been discussed in the past in connection with the Redfield theory
(see, for example, Slichter (1963)). The results of this discussion are supported by
our numerical work presented in section 4 which shows clearly that the approximation
is quite good for describing either the initial part of a P, () function (small time) in
general or a P, (t) function in the motional narrowing limit for all ¢ values. We now
use the expression for o, (¢} deduced from equations (13)~(15) with o3 (¢") = o%(0)
to get formulae for the depolarization functions.

3.3. Expression for the longitudinal depolarization function obtained from iteration

From the expressions given earlier, we can write
P,(t) = PO(t) + PO (1) + PP(1)

with:

0= 1 (). (45
PR(t) = %Tr {psaz%Lt dt’ exp (mT?t)

x [exP (—i'lgot’) M, exp (i']{;t’) ’O'z] exp (:l;_ﬁ)}
= (5[4 [0 (%) a0 (52}

and

s ' . ' g g : "
A= [exp ( 1?;Ut )‘Hl exp (1’}{}21& ) , [exp ( 17;0t )'Hl exp (1’,‘{;1& ) ,azH .

[
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Notice that the exponent (0) does not have the same meaning as in section 2. For the
computation of the traces we need to specify H, and H,. We set Ho =H, + H, ;
where H,, , is the p* Zeeman Hamiltonian:

ﬂp,z = _%Mpaz Wy =%u (Bext + (B:)) . (16)

B is the effective magnetic field vector at the »* due to the spins of the sample. We
have {A) = Tr,{p,A}. Notice that B does not contain any ¥ spin operator. *,
has been defined previously. H, which describes the magnetic interaction between
the p* spin and the spins in the sample can always be written as H, = —1~,fo - 6B
where § B is the fluctuating part of B (B = §B + {B)).

It is easily shown that P{2(t) = 1 and P{V(2) = 0. B get P{P(1), the following
identity, which can be proved, for a well defined f function, by integration by parts,
is useful:

t 13 t
f ar [ ae" e — ) = / dr (t— ) f(7). a7
1] o g
After some algebra, using this identity, an expression for Pz(z)(t) can be derived:

a2 gt
PEXt) = —;—"i./; d7(t—7) [exp (iwp'r) &, _(7)+exp (—iw#’r) (D_+(r)]

where @, 4(7) = 1[{6B,(7)6Byg) + {6 BgéB,(r)}] is a symmetrized correlation
function of the magnetic field fluctuations at the u+ site. Notice that ®,4(7) =
®5,(—7). We have

§B, (r)=-exp(iH,7/k) 6B exp(-iH,T[h).

In section 2 it has been shown for the longitudinal relaxation function, from the
strong collision model, that if the p+ diffuses sufficiently fast we can write

Pz(t) = exp [_wz(t)] (18)
where 1/,(1) can be obtained from equation (10). If we postulate that this form

for P,(t) is valid in general, +,(t) can be deduced from the quantum mechanical
second-order iteration by identification of the expansion terms:

42
P, (1) = 7“-/; dr (t—7) [exp (iw,7) @, _(7)+exp (—iw#'r) &_, ()] (19)

or
(=% [ ar (1= 1) {cos (w,7) [,2(1) + By ()]

+ sin {w, 1) [®,,(7) - &, (7)]}. (20)
This result has already been given by McMullen and Zaremba (1978). As our deriva-
tion is systematic, it is easy to know where the approximations have been made, We
have neglected the modification of the polarization of the u* beam by the external
magnetic field and the time evolution of o2, ("), (¢% (") = o%(0}). In addition we
have supposed that the quantum calculation gives the first two terms of the expansion
of the exponential depolarization function (equation (18)). Notice that P,(¢) given
by equations (18)-(20} reduces to the NMR result if the characteristic time of the
correlation functions, 7, is much shorter than ¢ and w, 7, € 1 (Moriya 1962). The
next subsection shows that our method leads to a new expression for P, (t).
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3.4. Expression for the transverse depolarization function cbtained from iteration

The method used to derive P,(¢) can be applied to the computation of the transverse
depolarization function P_(t). The details are given in the appendix. As for P,({),
P_(1) can be written with the {+,—, z} or {z, ¥, 2z} coordinates. In the {+,—, 2z}
coordinates we have

P.(t) = Re {exp [iw,1 - Q(2)]} (21
with

t 2 .
Qt) = 'yﬁ‘/; dr(t—-r)®_ (1) + 12”—/0 dr (i - r)¢_+(f) exp (-—iw“r)

2 t
+1T—"f d7 [®,,(7) + ®__(7)] exp (~iw,7) - @2)
4w“ 0
Using the {«,y, z} coordinates we can write
P,(t) = exp [-9,(¥)] cos [w,t + @(t)] (23)

with
,.),2 t
bty =5 /0 dr (2 — 1) {2@,,(7) + cos (w,7) [2oo(7) + @ (7)]
+ sin (w;zf) [q):ry(‘r) - ¢ym(‘r)]}

(w,u.T) [‘I)yy('r) - (D:n:('r)]

2 t .
w(t) = 12-‘5[] dr(t—T) {sin (wy‘r) [q)m.('r) + d?w(r)]

+ cos (w,u‘r) [(pya:('r) - (Dwy('r)]}
2 gt .
d}l

+ ﬁ A dr cos (w#*r) [ny(f) -&,.(7)]. (24)
The expression for ((t) given above is valid when (t) < 1. It scems that these
expressions for P,(t) have never been published so far. If the terms proportional to
1/w, in the equations for () and (t) are neglected (high-field approximation),
we recover the NMR formulae (Moriya 1962, Heller 1976) and, as expected, v.(t)
and +,(t) are related to each other:

¥, (1) = 1p,(8) + 72 / dr (t—1)@,,(7).

In the motional narrowing limit and in the high-field approximation the phase term,
(t), is proportional to ¢ and therefore leads to a frequency shift. We notice that this
shift is influenced by spin—spin correlations (the ®,5(7) terms).

The functional dependence of the SR depolarization functions on the spin cor-
relation functions is such that symmetry arguments can be used to simplify this de-
pendence. Group theory should be useful for that purpose.

To understand the effect of the different terms in the depolarization functions, in
the next section, we will discuss the case of the p¥ diffusing in a lattice of nuclear
dipoles.
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4. Application to the case of nuclear dipole systems

The expressions for P,(t) and P_(f) given in the previous section are general and
do not depend on the type of interactions included in the sample Hamiltonian, 7,
and the coupling Hamiltonian, #,. The main hypothesis made in the course of the
calculation of the functions is that the p* diffusion is sufficiently rapid. This will
be apparent when discussing the results which we are now going to derive. The u*
depolarization is due to the interaction between the p+ spin and the fluctuations of
the electronic and nuclear spins of the lattice. Here we do not consider the electronic
spins. In addition we neglect the dipolar interaction between the nuclear spins which
is weak. Therefore X, only includes the dipolar interaction between the u* and the
localized nuclear spins. We have

k 1

where
Y T4 A;
6B, = z [?exp(—up,-)f,-’_l_ + & eXp (i) I; _ — ZC,-I,-V,]

i=1

N
6By = [Cil;  + Byexp(2ig;) I; . + A; exp (iv;) I; ]

=1

§B_=(6B,)". (25)

The previous equation is written taking into account the fact that for a nuclear system
at a uwsual temperature, I, .(7) = éI; ,(7). The geometrical factors are

A; =3D;cos08,;sin 8, B; = 2 D;sin?#,

and
. 1—3cos?d, . o v B
;= D;— 27 th D, = Po. 2l
s ¢ 2 W oA4g r?-

r;, 8; and ¢, are the distance, polar and azimuthal anrgles of nucleus ¢ relative to
the pt. +,; is the gyromagnetic ratio of I;.

The u*t diffusion can be introduced by proper terms in the pt sample system
Hamiltonian. This quantum approach, which can describe the P, () functions when
the u* diffuses coherently (McMullen and Zaremba 1978, Kondo 1986), leads to a
complicated formalism. In most practical cases a semiclassical approach is sufficient.
In this Iatter approach, as in NMR (Abragam 1961), the p*+ coordinates are considered
to be time-dependent and an ensemble average is performed over these coordinates.

In the previous section we have shown that the P, (¢) functions depend on mag-
netic field correlation functions and therefore, using equation (25), on terms such
as

o () 95 (v5) {L; 0 (1)1 (0)) (26)
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where the g, and g4 functions, which describe the geometry around the ut, can
be deduced by identification using equation (25). We will neglect the case where a
nuclear spin is nearest neighbour to two ut localization sites. Thus we will take ;=
r, in equation (26). As a result of the u* diffusion, r; is a stochastic function, r;( 7).
Therefore we substitute the product function g, (r;) gg (r;) in equation (26) by its
average over the stochastic diffusion process, ¢; ,(7)g; 5(0). Here to proceed further

we write q,-,a(‘r)q'-,ﬂ(ﬂ) = ¢; o{0)q; (0)f,(7) and assume that the correlation
function f,(+) takes the form

fo(7) = exp(-v|7|) )

where v is the pt jump frequency. McMullen and Zaremba (1978) have shown
that this form is a good approximation for a p+ hopping on a simple cubic lattice.
Basically with this simple form the possibility for the u* to return to its original
site is neglected. Therefore this approximation should break down if the number of
nearest-neighbour interstitial sites is small. This could be the case for a u* diffusing
between octahedral or tetrahedral interstitial sites of a Bcc lattice.

Notice that, since at normal experimental temperatures {3%,) < 1, the density
operater of the nuclear spin system is very simple:

N
o, =1 J[(2L+1).
i=1
We first discuss the longitudinal depolarization function.

4.1. Study of the longitudinal depolarization function

The P,(t) function can be computed from equations (18) and (19) and an expres-
sion for the field correlation function ®_ () = @ _(r). Using the definition of
this function, the expression of the dipolar magnettc field at the pt site and our
prescription for taking the p* diffusion into account, some algebra gives

N
@_(r) = F(r) Y pi(T)
i=]1
with
pi(r) = AIAF () + BIaY (r) + CIAG* (T)
+ B;C; [exp (—~2¢;) Af () + exp (2ig;) A5 (7)]

+ A, C; [exp (—iw;) A (1) + exp (ig;) A (7)]
+ A; B; [exp (ig;) Ai7 () + exp (—ig;) AR (M. (28)

We have used the symmetrized spin-spin correlation function Af}ﬂ ()

AP () = § [{Lia() ) + (L 5 L0 (7)) - (29)
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Because of the approximation discussed after equauon (26) (r; = r;) we take i = j.
As we neglect the interactior between the nuclear spins, we have

I,-,a(‘r) = exp (i?{i‘,r/ﬁ) I; o €Xp (—i?{,-_,fﬁi)

where 7, , is the Hamiltonian of nuclear spin <.
In order to understand the physical meaning of our result we first assume that
the nuclear spins feel only an external magnetic ficld. Therefore we have H;, =
—hw; I, , with w; , = % (1 + K;)B,,, where v, is the gyromagnetic ratio and K
the nght shift. With this simple Hamﬂtoman, I; ,(r) can be computed analyncally
vsing the identities exp(ial, )}, exp(—ial,) = exp(:}:m)fi After some algebra
we pet

N
1,bz(t)=2w?‘d1,-(l,-+1)x [é-( — 3cos? 9) g (w, —w; ;s t)

=1

+ 35in?6; cos? 0;0{?) (w,. 1) + Zsin* 8,6{") (w, + w; ,,t)] . (30)

w; g = (po/4w)v,v;ifri is the dipolar pulsation for I;. We have set

4
g,(f>(w,t)-.—_~/ dr (t — 1) f, (1) cos(wT).
0

Not1ce we  have g(c)(w,t) = {1 - cos(wt)]/w? in the quasi-static limit and

5w, t) = (v1)/(»? + w?) in the motional narrowing limit. Equation (30) has
already been published by Hayano et af (1979). In zero field, w; , = w, = 0, we
recover the function given in equation (10) with

N
= %zwiz,dfi (L; +1)(5-3cos?8;). 31)

i=1

The fact that the quantum calculation gives the Abragam formula (with 2A? instead
of A2) does not seem to have been notjced before.

The nuclear spins around the p* larger than 1 feel an electric field gradient
which is produced by the p* electric charge (Schenck 1985) and the lattice electric
charges for nuclear spins with local symmetry less than cubic. To describe the effect
of this electric field gradient, we add a new term to M, which, for the case of a
gradient due only to the u*, is simply written (Hartmann 1977} H; , = hw;  [(n; -
IY(n,; - I) - L,(I; + 1)/3]. n,; is the unit vector linking the p* localization site to
the lattice site of nucleus i.

In order to appreciate the quantum effects on P,(t), in figure 3 we present
two examples (zero field case and B,,, = 30 G) of this function computed from
three different models. The functions are calculated ejther from our second iteration
formula or from the strong collision model. The static functions of the latter model
are either taken from Kubo-Toyabe theory or are computed exactly using Celio’s
method (1986). The result of the first and third models cannot be distinguished on
the figure. We have supposed that the p* is diffusing between the octahedral sites
of metallic copper. We have taken the values given by Luke er al (1991). We have
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Fignre 3. Examples of the effect of the spin dynamics on the longitudinal relaxation
function in the case of the pt in metallic copper. The examples are given for two
vaiues of the external magnetic field, Boxt. The [ull curves present these functions
given by our second-order iteration or the strong collision mode] with the exact static
depolarization functions computed from quantum mechanics (the two types of curves
cannot be distinguished) and the dotted curves the results of the strong collision model
with the static functions given by the Kubo-Toyabe model. The parameters of the curves
are given in the main text.

You = 72.51 Mrad s~! T, Qq, = —0.205 barn, V,, = 0.441 x 10~%! V m—?2
and r = 1.81 A Qg, is the nuclear quadrupole moment of Cu, V,, the zz
component of the electric field gradient tensor at one of the six Cu nuclei and r
the distance between the pt and a Cu nucleus. We consider only the six nearest-
neighbour Cu nuclei to the ut because the exact computation of the static P, (%)
functions can only be performed for this restricted number of nuclei. This leads to
w, = —3.200 us~!, wy = 0.110 ps~! and A = w12 = 0.381 MHz (the effect
of the electric field gradient on A is taken into account approximately; see Schenck
(1985)). We have chosen v = 3 MHz which should be roughly the value of the p¥
jump frequency at room temperature. While the P,(f) functions computed either
from the strong collision mode] with the exact static functions or from our second
iteration formula cannot be distinguished on the figure, the functions obtained from
the strong collision model with the static functions computed according to Kubo-
Toyabe are clearly different. The functions deduced from this latter method decrease
more slowly. This can be understood intuitively. For example let us consider the
structure of the iteration formula for the zero-field case. Although the Zeeman and
the quadrupolar Hamiltonians do not have the same structure, it is certain that when
the u* diffusion is sufficiently fast, terms such as

v 1 1
y2+w2_;(1 +w2/v2) (32)

are present; see equation (30). Thus P,(t) contains flipping terms which describe the
spm dynamics. We find, for example, a term with the factor v/[s® + (w, — Wy, D2
in the motional narrowing limit which, foIIowmg well known NMR theory (see for
example Slichter (1963)), describes the mutual spin flip of the u* and I; spms For
Cu as the ratio w?/v? is not negligible when compared with one, w"’/ Vi = 1.22;
this Jeads to an increase in the depolarizatiop. Whereas the zero-field curve shown in
figure 3 computed from the iteration formula (or the strong collision model with the
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exact static function) can be described by the strong collision model with the static
function calculated according to Kubo-Toyabe if we take v = 2.8 MHz, it is not
possible to fit the B,,, = 30 G curve by this latter theory with A = 0.381 MHz.
The closest curve obtained with this A value gives v = 2.4 MHz. Therefore, at the
best, an experimental spectrum analysed with this model leads to an under-estimation
of the jump frequency. In addition the analysis of the zero- and longitudinal-field
data are not consistent.

A depolarization function computed from the iteration formula must be a good
approximation at least when the p% jumping rate is large enough. The fact that the
strong collision mode! with the exact static function and the iteration formuia give the
same result at » = 3 MHz means that all the spin dynamics is already contained in
the exact static function. The diffusion described by the strong collision model does
not add a new spin dynamics mechanism. It only modifies the properties of it. This
can be understood because the physical hypothesis which we have made to compute
P_(t) from the iteration equation are the same as the ones leading to the integral
equation of the strong collision model. The Kubo—Toyabe method does not describe
the physics in detail: it neglects the nuclear spin dynamics which is essential. The
strong collision model gives a good description (within its own hypothesis; basically
the correlations between the nuclear spins are neglected) if the right static function
is used.

llillIllIIilllil[lilllllllllll]]l

1.0 Bext=30 G , /=0.25 MHz

0.8

0.61
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Figure 4. Study of the validity of the second-order iteration. The curves are drawn
for the case of a ut in metallic copper. The full curves present the resulls of our
second-order iteration. The dotted curves show the prediction of the strong collision
model with the static functions compited from quantum mechanics, & is the pt jump
rale,

Up to now we do not know what is the smallest value of the jumping rate for
which the iteration formula can be used to describe the ut diffusion in Cu. In
figure 4 we present P,(t) computed either from the strong collision model with the
exact static function or from the second-order iteration. It is quite clear that even
for » =1 MHz at zero field the iteration is a reasonable approximation. This fact
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is interesting because it means that our iteration formula can be used to describe
P,(t) even for a relatively slowly diffusing x+. Thus, for most practical cases,
the function can be obtained with 2 modest computing time. The structure of the
iteration formuia (see equation (30) for an example} clearly indicates that the spin
dynamics of the nuclear spins is important. This probably explains why the exact
static depolarization function is different from the prediction of Kubo and Toyabe for
the longitudinal geometry.

The results just described could lead to the idea that the second-order iteration
gives reliable results only in the motional narrowing limit. This is not so. It gives a
good picture of the initial part of P,(?) in the whole range of ». For example, when
an electric field gradient and/or a magnetic field acts on the lattice nuclei, the iteration
result has a less restricted time range validity compared with the usual parabola
obtained from Van Vleck’s method because of the effect of the non-secular terms.
This is clearly seen if one looks at the initial part of the numerically exact P;(u)(t)
function for the case of a static u* in Cu at zero field: whereas the parabola is a good
approximation only up to 0.7 us, the iteration formula gives a fair approximation up
to 2 us. As has already been mentioned, this is in contrast to what is seen for the
case of negligible electric field gradients and external field. This is probably related
to the fact that the longitudinal Abragam formula (equation (10) derived using the
distribution method) is a good approximation (if v is large enough) of the quantum
result for the zero-ficld case only if no gradient acts on the nuclei.

4.2. Study of the transverse depolarization function

The P,(t) function can be computed from equations (21) and (22) with expressions
for ®_,(7) = @3 _(7), ®,,(r) and @ (7) = B _(7). <I>_+(1':) is given by
equation (28). The other two field correlation functions ¢an be determined using the
expression of the dipolar magnetic field at the ut site and our prescription for taking
the ut diffusion into account. We have

N
(Dzz(r) = fv(T) zsi(T)
=1

with
A,z . ++ A,z B - 2422
s;(T) = = €XP (—2ig;) AT (T) + 3 exp (2ig;) A7 (7)) + 4C A (1)
— A;C;exp (ig;) [AF (1) + AZT ()] = A; C;exp (—ig;)
2
x [AF(7) + AR (0] + 5L (A5 (1) + AFH ()] (3)
and
N
@ (7)) =7 u(T)
=1
with

u,(7) = CIAJY () + Bf exp (4ip;) A~ (1) + Alexp (2ip; ) AfF(7)
4+ C;B;exp (2ip) [AL (1) + AT ()] + C;A; exp (i)
X [AF(r) + AZF (7)) + By A;exp (3ig;) [AF (M) + AT (7)) (39
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In order to understand our result we first assume that the nuclear spins feel only an
external magnetic field. After some algebra we get

! N
Yo (1) = 30, (1) + D wia i (L + 1) 9; (W, wi001)
i=1
where
v; (w05 2 ty=4(1- 3c0529) g©)(0,¢) + 35in? g, cos? §; ;g (w, 21 t)
3sin*g; — 2sin? 6,

+ 08 () b, (wi01)
3 cos (2¢p;) cos? §, sin? §; KD (w, 1)
2w, “u
and
N
‘P(t)zzwz:'z,dIi(Ii+1 (wu?ws z"t)
i=1
where

2w, (W, w5 5,1) = 1 (1 —3c0s?8,)” g (w, —w; ;1)
+ 3sin? §; cos Gg(’)(w#, t) + 2sin 19,9 (W, + @i 2 £)
3sin* 9, — 2sin% 4,

— cos (2¢;) ” ’thL,( Wy 4y t)
u

3cos(2:.p,)cos 9,sin®9;

“u

LR (w0 1), (35)
We have defined

g (w, 1) = f dr(t—7)f,(7)sin(wT)
), (w,t) = ftd-r sin (w, 7) cos(wr) f,(7)
0
t
hgf-:?d” (w,t) = f d7 cos (wpr) cos(wT) fr(7)
0
K (w, 1) = /0 d7 sin(wr)f,(r)

kff)(w,t) =/0 dr cos(wr) f.(1).

These formulae have never been published. The expression for p,.(t) given by
Hayano ef @l (1979) is identical to our expression if our two terms proportional to
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1/w, are neglected. In the high-field approximation the g,(f)(w,t) and gf,s)(w,t)
functions go to zero. Thus we recover, as expected, the transverse Abragam formula
(equation (9)) with

N
A=W L (L +1) 1 (1~ 3cos? 8,)°.

=1

In order to test the effect of the spin dynamics and the terms proportional to 1/w,
on P.(t), we present in figure 5 an example of this function computed with three
different approximations. One curve (full) has been calculated using our complete
second-order iteration formula. A computation of P_(t)} has been made with this
formula but omitting the 1/w, terms. The results of these two computations cannot
be distinguished in figure 5. Therefore the 1/w, terms have no effect for the case
considered. A numerical study shows that the 1/w, terms have a small effect if the
pt diffusion is not too fast (» = 1 MHz). The second curve (dotted) is the result of
the transverse Abragam formula (equation (9)) with A = 0,234 MHz. This value has
been calculated using the expression for A just given. We have supposed that the pt
feels the effect of only two Cu nuclear magnetic moments. One is located at 1.5 A
on the z-axis and the other at 2 A on the y-axis. Such a non-symmetric environment
has been chosen in order to detect the effect of the 1/w, terms. When the u7 is in
a highly symmetric environment, these terms do not contribute to F,(t). This can
be seen from equation (24). A field of 20 G (B,,, > 5(A/v,) = 13.7 G) is applied -
along the z.axis. We take v = 3 MHz and suppose that the nuclei do not feel any
electric field gradient. Figure 5 clearly shows that whereas the terms proportional
to 1/w, have no effect, the spin dynamics (which is described by the terms which
contain w; , and w,) has a strong influence on the depolarization function. Notice
that a frequency shift is present.
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Figare 5. Example of the effect of the spin dypamics on the transverse depolarization
function for a small external magnetic field. The full curve gives the result of our
second-order iteration. The dotied curve shows the prediction of the Abragam formula,
The external applied mapnetic field is Bext = 20 G. The other parameters of the curves
are given in the main text.

In the case of the longitudinal depolarization function we have indicated that the
second-order iteration is a good approximation if the pt diffusion is sufficiently rapid
(and in general if one is only interested in the initial part of the function). We may
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expect for the transverse depolarization function that this approximation is tolerable
even for a static u* if one is not interested in too large a time. This hypothesis is
supported by two facts. First the P (1) functions described by the Markov process
with the static function given by equation (7) (the case of a static ut is included
in the framework of the stochastic model) and the transverse Abragam formula are
never very different (Kehr et al 1978). Second when P,(t) can be easily computed
numerically using equaticn (12) as, for example, in the case of a static p* interacting
with only one nucleus, the data can be reasonably described by our iteration formula
if £+ <9 us. However more work is needed to check the validity of this hypothesis.
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Figure 6. Effect of the spin dynamics on the transverse depolarization function in the
case of a static ut in metallic copper. T avoid the possible effect of the level crossing
we neglect the electric field gradient due to the pt. The full cwsve gives the result of
our second-order iteration. The dotted curve shows the prediction of equation (7). The
external applied magnetic ficld is B.y: = 100 G,

Before finishing this section we would like to point out an interesting result which
should be checked out by an exact calculation of P_(t). In figure 6 we present P,.(t)
computed with our iteration formula (full curve) for the case of a static 4+ in Cu
neglecting the electric field gradient due to the u*. An external field of 100 G is
applied along the [110] direction. The dotted curve is the result of equation (7). The
two curves are clearly different. The curve computed from the second-order iteration
formula does not have a Gaussian envelope. Thus for this case the spin dynamics
still influences the depolarization function at B,,, = 100 G. We point out that even
at 300 G there is still a difference between the classical and quantum curves. On
the other hand, the same computation when B,,, is along the [100] direction gives
a P_(t) function which cannot be distinguished from the result of equation M. A
close 100k at equation (35) shows that tlus is expected because 8, is either 0, » /2
or w. Thus the terms proportional to sin? 6, cos? ; do not oonmbute to _(t). In
addition the other terms, except the one Ieadmg to the Abragam formula (first term of
the v; function), are negligible because B, is large. Therefore the influence of the
spin dynamics on the depolarization functions depends strongly on the geometrical
conditions.

5. Summary, possible extensions and conclusions

In this paper we have discussed in some detail the stochastic model (with the static
depolarization functions given by the distribution method) which is usually used to
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describe the uSR data. We have noticed that a renormalized Abragam formula is a
good approximation of the longitudinal depolarization functior, P, (%), when the ut
diffusion is sufficiently rapid. We have determined at which value of the external field
the simple Gaussian approximation to the static transverse depolarization function is
valid.

The main concern of this work has been the quantum computation of the depo-
larization functions using a second-order iterative method. We have found formulae
which are extensions of the ones used in NMR.

We have applied these formulae to compute the depolarization functions for a
pt diffusing in a nuclear dipole lattice. Our results are an extension of the ones
given by Hayano e al (1979). Using our second-order formula, we have computed
the depolarization functions for the two experimental geometries, in different physical
situations. Our results show that it is necessary to take into account the spin dynamics
to describe the depolarization functions at low fields praperly.

We have shown that the exact static depolarization function contains all the spin
dynamics. The diffusion does not add a new spin dynamics mechanism. This fact
shows that it is important to describe the spin dynamics for a static ut+ properly
before trying to include the effect of diffusion on the depolarization function.

Our results represent the first step towards a full description of the depolarization
functions for the case of a ut diffusing sufficiently fast in a nuclear dipole system.
In order to reach a completely satisfactory description, the two hypotheses which
we have made should be studied. We have neglected the nuclear spin correlations
(equation (26)) which could be important if the p* jumps between sites which have
common nhuclear spins as nearest neighbours. In addition we have chosen a phe-
nomenological form for the correlation function, f, (7}, which takes into account the
pt diffusion (equation (27)). f,(7) depends on the lattice structure and the ut
localization site. A numerical calculation of this function should be possible for each
physical case. The result could be introduced in equations (28), (33) and (34) to
compute the depolarization functions.

Within the hypotheses of the strong collision model a uSR depolarization function
can be computed in a reliable way if the related exact static function is used. This
always requires a large amount of CPU (central processing unit) time. For many
physically interesting cases the calculation cannot even be performed (Dalmas de
Réotier et al 1990) because this time would be too long. We now suggest a new
method which, as in Celio’s method (1986), uses the Trotter formula but in a different
way. Instead of decomposing the total Hamiltonian, A, as the sum of Hamiltonians
for each ut spin-nuclear spin pair, a more fruitful method could be to write Ht =
N(H ) with t = Nr. This sliding of the time should lead with the help of the Trotter
formula to a path representation of the depolarization function. The advantage of
the proposed method over the one used by Celio could be the possibility of finding a
semiclassical approach for the depolarization function. (Up to now only two methods
exist. We have either the fully quantum or the classical distribution method.)

In this paper we have considered that only one source of depolarization is present.
But when two sources act to depolarize the pt as in MnSi (Kadono et al 1990b),
the resultant depolarization function is the product of the function describing the
fluctuations of the electronic magnetism by the function taking into account the de-
polarization due to the **Mn magnetic moments. Then to deduce reliable information
on the electronic fluctuations from the experimental data, it is important to describe
the second source of depolarization properly. The application of our results could
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help to resolve part of the present inconsistency in the analysis of the data.

In conclusion we have shown that to get a consistent analysis of the pt diffusion
data in a nuclear spin lattice, it is important to take into account the spin dynamics.
A numerical comparison between the results of the strong collision model with the
exact static function and our formula for the longitudinal depolarization in the case
of Cu has allowed us to study the validity of the iteration. We have found that it is
surprisingly good. The advantage of using our formula over the strong collision model
is while the computing time needed to calculate a depolarization function using our
formula is only about 1 min, the computation with the second model requires, to get
a reliable result, many hours of cPU (on a VAX 8800). Our result suggests that the
difference between a numerically exact static depolarization function and the related
function deduced from the distribution method is due to the neglect of the nuclear
spin dynamics by the latter method. Clearly more work is needed to understand the
effect of the spin dynamics.
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Note added in proof. Recently it has been shown (Dalmas de Réotier B, Yaouanc A and Meshkov § V
1992 Phys. Len. 162A 206) that it is possible to compute exactly (better than 1%) a static P;(t) function
using a Monte Carlo method with dassical mechanics including the effect of the spin dynamics if the
dimension of the Hilbert space is large enough. So far, this method is limited to the case where no
clectric field gradient acts on the nuclei. The cPU time needed is important. Thus our iterative procedure
is still valuable. In addition it can be used even if the Hilbert space is small.

Appendix. Sketch of the derivation of P, (1)

We follow the method presented in section 3.1 for the derivation of P,(¢). The
computation of F_(t) up to the second order in the iteration gives this function as
the sum of three terms. The first two terms are easily computed. We have

PO (1) = cos (w,1) PM(#) = 0. ' (A1)
The computation of P£2)(t) is more involved, The iteration gives
17\ [ v
P(4) = 5 (?{) f dt’j dt” Tr{p,0, exp (iH,t/h) Aexp (~iHyt/k))}
0 0
with

A = {exp (—iHot' fR) H, exp (i t'/h) , [exp (—iH 1 /h) H, exp (iH1" (R} ,0,]].
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A tedious but straightforward evaluation of the trace leads to

t 2 t
PRty = —'ﬁ cos (w#t)./u dr{(i{—7)®,,(7)~ ‘—Yzﬁ cos (wﬂ)\/ﬂ dr(t—7)

x {cos (w“r) [®..(T) + <IJ“(T)] + sin (w#'r) [d’xy(r) - @y,_.(r)]}
2

t 1 2 t
- 1?" cos (w,t) ‘[o dt’j; at" k (t',t") - 12‘5 sin (w,t) j.. dr{(t—-r1)
x {sin (w,7) [B,4(7) + Py (1)) + 08 (w,7) [€,.(7) — By ()]}
72 ] : r t‘ ' Y 1
- ?"sm {w,t) /; dt jo dt” k (¢, ")
where
k (', 8") = cos [w,(t' + t")] [®,, (¢ — ") = &, (¢' - )]
—~sin [w, (¢ + t")] [@, (¢ - ") + @ (¢ - 1")].

The k, function is the &, function with the substitution of the cos and sin functions
by the sin and —cos functions respectively. The identity given by equation (17) has
been used. The expression given here can be simplified with the help of the following
identity

t t!
/ dt’] d” exp [iw, (t' + t")] &(¢' — ")
0

/ {exp [iw,(2t - 7)] —exp (iw,7)} &(r)dr

21w

which can be proved by integration by parts. In addition taking into account the fact
that &, ,(%) is a real function when {a, 3} = {=,y, 2}, we finally obtain

t 2 ?
Pag?)(t):—fyﬁcos (w”t)./o d'r(t—-r)@xz(r)—zzf-cos (w“t)./n dr (i —7)

x {cos (w#'r) [Qm(‘r) + CDW(T)] + sin (w ™) [‘-‘Ilw('r) - Qy_,,(‘r)]}

2

+ Tcos (w, t)/ dr sin (w,7) [®,,(T) = B . (7)]
"

——sm /d'r(i—r)
x {sin (w#r) [®,.(T)+ ‘IJW(T)] + cos (w#T) [ny(r) - ‘I’zy("’)] }

2 t
)j; dr cos (w#'r) [ny(v') - (). (A2)

We suppose that an expression of P, (%) valid in general is

P,(t) = exp [~ ()] cos [w,t + ¢(1)] .
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Keeping only the first terms of its expansion we write

P,(2) = [1 — ¥ (1)) cos (w,t} ~ (1) sin (w,?). (A3)

This formula is valid if ©(t) € 1. The identification term by term of equation (A3)
with equations (A1) and (A2) leads to the expressions for §2(t), ¥,(1) and (%)
given in the main text. '
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