IX

THERMAL RELAXATION AND DYNAMIC
POLARIZATION IN SOLIDS

Hence you long-legg’d spinners, hence /
A MIDSUMMER-NIGHT'S DREAM,

Iy this chapter we extend the study of nuclear relaxation mechanisms
to solids. The problem here is essentially the same as that for liguids
and gases, namely to calculate the probability of a flip of a nuclear
spin caused by its coupling with the thermal motion of a ‘lattice’. In
the same way as for liquid samples, this flip can always be visualized
as resulting from a fluctuating magnetic field or a fluctuating electric-
field gradient ‘seen’ by the nuclear spin under consideration. For soms
internal motions such as translational diffusion of atoms or hindered
rotation of molecules, that take place in solids, the description used
for liquids can be taken over with very little change.
There are, however, some significant differences. The internal mp-
tions in solids will often have much smaller amplitudes and/for much
longer correlation times than in liquids. This has important conse-
quences for the values of the relaxation times,
It is sometimes possible in solids to obtain relatively simple quantuin
mechanical models of the ‘lattice’ and to perform a realistic calculation
of the relaxation times, using the quantum mechanical approach, which
in liquids had a rather formal character. This approach becomes a
Dnecessity at very low temperatures when few degrees of freedom of the
‘lattice’ are excited. .
For nuclei with spins larger than } the existence of quadrupole inter-
actions in nuclear environments with lower than cubic symmetry (due
to crystal structure or to crystal imperfections) modifies the pacings
between the spin energy levels and creates new situations, not met ;with
in liquids. §
Finally, in solids the tight coupling that exists between nuclear spins
has important consequences. In liquids we were able to give a similar
treatment both to the caloulation of 7}, which measures the time re=
quired for the diagonal matrix elements of the density matrix of tha
spin system (populations) to reach their thermal equilibrium values,
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and also to that of 7}, which is the decay time for the off-diagonal
matrix elements.

In solids, the establishment of a thermal equilibrium between the
spin system and the lattice, under certain conditions outlined in Chapter
V, can be broken into two steps; first, the spin system reaches an
internal thermal equilibrium with a spin temperature 7y in a time T,
for which only a qualitative definition can be given since the approach
of the spin system to equilibrium has no reason to be and in fact is not
exponential; secondly, the spin temperature 7 tends towards the lattice
temperature 7 with a time constant 7; > T, which can be defined
much less ambiguously than T, since the decay of a single parameter,
the spin temperature (or rather its reciprocal, as will appear shortly),
is involved.

A general expression for T, under the assumption of the existence of
a spin temperature will be derived in the next section in connexion
with the problem of nuclear relaxation in metals, which we shall con-
sider first, as possibly the best example of a situation where the quantum
mechanical features of the ‘lattice’ play an important role.

I. Covpucrion ELECTRONS AND SPIN-LATTICE
RELAXATION IN METALS

We saw in Chapter VI that in metals the hyperfine coupling between
electronic and nuclear spins produced a modification of the energy
levels of the nuclear spin system, expressed by a change in the nuclear
Larmor frequency (Knight shift) and by the appearance of the so-
called indirect couplings between the nuclear spins. We consider now
a dynamical effect of this hyperfine coupling which is a powerful
mechanism for nuclear spin-lattice relaxation. We shall assume in its
evaluation that the hyperfine coupling is the scalar contact interaction

B = T 1800, (1.9), W

disregarding the usually much smaller dipolar coupling of the nuclear
spins with the spins of the electrons, as well as their coupling with the
orbital moments of the electrons.

In connexion with the contributions of the neglected hyperfine inter-
actions the following point should, however, be made. As explained
in Chapter VI, the existence of a dipolar hyperfine coupling could
manifest itself through an anisotropy of the Knight shift, and the in-
complete quenching of the orbital electronic momentum, responsible

i
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for the orbital hyperfine coupling, through a departure of the electronie
g-factor from the spin-only value. The absence of these effects in the
Knight shift and the g-factor does not permit us to conclude that, the
dipolar and orbital hyperfine couplings are ineffective fur' llu(‘]\:_‘&r
relaxation. The Knight shift has a tensor dependenca on the orientation
of the applied d.c. field H,, and any nuclear enviromnetu. w:t.hl at least
cubie symmetry will necessarily lead to an isotropic Knight shift what-
ever the character of the individusl electronio wave functions.

For the probabilities of relaxation transitions it is the mllmn'.'ﬁ of the
off-diagonal matrix elements of the dipolar hyperfine iutumct_u_m th.a_xt.
count and those may well be different from zero even if the anisotropic
Knight shift vanishes, An analogous argument helds for the orbital
eoupling. ) )

Tn that connexion, we saw many examples in Chapter VI of situations
where, in spite of the absence of first-order offects, the d‘P’U]’{T and
orbital hyporfine couplings were, through the squares of Lhc_lr cd'}’-
disgonal elements, responsible for effects such as indirect spin-spin
couplings and chemical shifte. A value of T; eah?ulat:od an t,l.uf basis
of n purely. scalar coupling, the magnitude of which is deduced from
the isotropic Knight shift, could then bo longer than the real one.

Nuclear relaxation by conduction electrons is not restrioted to metals
and exists in semiconductors slso, However, in the latter it competes
with another type of relaxation, that by fixed paramagnetic impurities
to be described in Section I of this chapter, and we shall postpone the
discussion of semiconductars till then.

A. An elementary calculation of the relaxation time _
The relaxation mechanism originsting in the sealar interaction 1)
works as follows: this interaction can indues a simultaneous flip of the
eleatron and nuclear spins in opposite directions, the energy Filw,—uy)
{where w, = —y, H, and w, = —y, H, are the electronic and nuclesr
Larmor frequencies) required for such a flip being provided by sn equ;l
change in the kinetio energy of the electron. Two conmquenm,&]ﬂ
important for the nuclear relaxation mechanism, follow from the F

statistivs obeyed by the conduction electrons in a metal, Firat, the.

average kinetio energy of the electrons is much larger than the ‘L'hurmll
energy kT and is of the same order of magnitude as the Fermi energy

Ejy; secondly, because of the Pauli prinviple most conduction ulent.mnll ]
eannot tale or give up the small energy A{w,—w,), and only the fﬂﬁ‘
tion (kT'/Ey) on top of the Fermi distribution contributes to the nuclsar
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relaxation process. The order of magnitude of the probability of a
nuclear spin flip can be evaluated as follows. The electronic field pro-
duced by the conduction electron at a nucleus can be considered as a
fluctuating local field with a correlation time ,. If we assume on the
average one conduction electron per atomic volume, the order of magni-
tude of 7, which is roughly the duration for which a conduction electron
can be localized on a given atom, is by a well-known quantum me-
chanical argument ~ #/Ey, where Ej is the Fermi energy.

Since for a random perturbation % #(t), with a very short correlation
time 7, the transition probability is of the order of [#%|r,, we find

1 vy i kT 8\2 2. %23 4kT
T Wd@;@; (g) ve ya O (0} F5x )

which is the correct formula to within a dimensionless numerical factor
of order unity. In (2}, ¢(r) is the electronic wave function normalized
to unity in an atomic volume, and the factor k7/E, takes account of
the reduction through the Pauli principle in the number of conduection

 electrons that participate in the relaxation process. A more accurate

caleulation will be presented now.

We assume that nuclear spins are = } and that the applied field
is sufficiently high for the nuclear spin-spin energy to be negligible in
comparison with the nuclear Zeeman energy. Then the decay or growth
of the nuclear magnetization, proportional to the difference p.—p.. of
the populations of the states I, = 4}, is clearly describable by a single
exponential, and a single relaxation time can be defined for the nuclear
pin system. For the electrons we assume that their own relaxation
time is sufficiently short for us to consider their spins as being constantly
in'equilibrium with the lattice, and that the temperature is sufficiently
high for the electronic Zeeman energy —v,AiH,; to be much smaller than
ET. Under those assumptions, electrons with spins up or down have
hﬁproximately the same Fermi distribution function

1 .

T8 = B BTy $0

The probability of an electron making a transition from a state of
inetic energy E to a state of energy B’ must be weighted by the
faotor S(E)1—f(E")), which is the simultaneous probability for the
itiitia] state to be occupied and for the final state to be empty prior to
the transition, If the transition is that which involves a simultaneous
: on-nuclear spin flip, the change in kinetic energy being very
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small, the assumption E' ~ E is legitimate and f(E)[1—f(E')] may be
safely replaced by

)= RUE—ER T} ap U ipsE—B,).

FE-f(B)} = [T Foxp{(B— Bp) kT 75 = kT ;r;)

The last approximate equality in (3) results from the fact that, since

Ej is much larger than kT, f(¥) is practically the Heaviside unit~step‘

function (with a minus sign) and its derivative is thus a 3 function.

The probability w(,_, . of a simultaneous electron-nuclear spin”

flip can be written

2|88\ IB(E— B, @

with 1) = Ui(r)e™|+, —),

1£) = Ger)e®*|—, +),
Bi—E; = B — Byt Hlw,~w,) o By—By, (§)

18, = — ey WL s+ ML s +Ls.).

k and k' are the wave vectors of the Bloch wave functions

by = Uy(r)etrr 0
describing the initial and the final electronic orbits and are normalized
to unity in the volume ¥V of the sample. The symbol |-, —) describes
the state s, = -4, I, = —}. We get \

2m

Wi 2 v 1 000 HOPHEB). (0

To get the total probability W, ., ) of a simultaneous flip, we musk
MRy OB gz f BB,

where Z(k) is the density of states in the k space, and integrate over
d%.d%'. We assume for simplicity that the Fermi surface has spherjeal
symmetry in the k space, p(E)dE being the number of states (of &
given spin) in the interval d¥, in the neighbourhood of E =l
Taking into account (3) we get

(Ti) = Wi = 2X g;?(%’zv Va ﬂz)zﬂesy(on*w{pwﬁ‘i'
1o L : .
S A RO ET. ()

We write (1/7}), rather than 1/7} to recall the restrictive assumptions =
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used to derive (7) (nuclear spins } and high applied field). If the assump-
tion of spherical symmetry of the Fermi surface is not valid, |¢5(0)}¢
must be replaced by an average of [x(0)12. |y(0) | over the Fermi
surface.

The resemblance between the crude estimate (2) and the more careful
one (7) can be seen if one remembers that, if »(r) are normalized in the
atomic volume Q = V/N, |yn(0)]2 = N|$.(0)}2, and that p(Ep) ¢ N|Ep.
For free electrons, where p(H,) = 3N/4E,, (7) can be rewritten

(), = #trmisioi g 2
where Ty = Ep/k is called the Fermi temperature.

The most remarkable feature of (7) is the proportionality of 1/7} to
the temperature 7', which is to be contrasted with the much faster
increase at low temperatures of relaxation times connected with lattice
motions, such as thermal vibrations, diffusion, molecular rotation, ete,

Before comparing the theory with experiment we shall free ourselves
from the two assumptions of nuclear spins } and high applied fields.

B. Nuclear relaxation time and spin temperature
" Asrecalled in the introduction to this chapter, a statistical deseription
of a system of interacting nuclear spins by a spin temperature 7y,
possibly different from that of the Iattice, that is, by a density matrix
poc exp(—BHg) with B = 1/kTy is, under certain conditions, a good
spproximation. Since the state of the spin system is then described
by a single constant 8 it is reasonable to assume that the spin-lattice
relnxation, that is, the trend of the spin temperature towards the lattice
temperature, should be described by a single constant T, aecording to
the relation 8 1

R ®)

where 8, = 1/kT and T is the temperature of the lattice. It is clear
that, because of the Curie law, (8) coincides in high fields with the usual
definition of 7} through

M, Loy

= (M=),
With the assumption of spin temperature it will be possible to calculate
the 8pin-lattice relaxation times for arbitrary nuclear spins and in
arbitrary applied fields. This is done by caleulating in two different
#iys the rate of change dE/dt of the average energy & = tr{pst} of

nuclear spin system.

i
}
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small, the assumption B’ =~ E is legitimate and f(E)[1—f(Z')] may be
safely replaced by

7 exp{(E—Ep)/kT} _  ndf B,
TN = iy expim—spery =~ ap = F1oE "

The last approximate equality in (3) results from the fact that, since
Ep is much larger than kT, f(&) is practically the Heaviside unit-step
function (with a minus sign) and its derivative is thus a & function.
The probability w . of a simultaneous electron-nuclear spin
flip can be written ?

2\ 1898 1) 8B~ B, )
with 1) = Udr)e|+, —),
1) = Uelr)es|—, +),

E—E, = B, — Byt hi(w,—w,) o= By,—By, (5):

Bty = =y W) L A WL o L)

k and k' are the wave vectors of the Bloch wave functions
k= Uk(r)eikr
describing the initial and the final electronic orbits and are nornm}.izagl_l ':
to unity in the volume ¥V of the sample. The symbol |+, —) dmnm\
the state 5, = -}, I, = —}. We get o
2
Wi 2 ra e 118009 R P1O(E— B,

To get the total probability W, _, (.. of a simultaneous flip, we musk
multply (Y Z0 26BN 1B, ;
where Z(k) is the density of states in the k space, and integrate oye
d?k.d3k’. We assume for simplicity that the Fermi surface has spheris
symmetry in the k space, p(E)dE being the number of states (
given spin) in the interval dF, in the neighbourhood of &
Taking into account (3) we get

1 o (B e\ ) T B
(i)0=2m+u)_,(~;,_zxﬁ(ﬂem)iw )T {p( ,}

= S AR r(0) (o BT

Ch. IX DYNAMIC POLARIZATION IN SOLIDS 359

used to derive (7) (nuclear spins 4 and high applied field). If the assump-
tion of spherical symmetry of the Fermi surface is not valid, |¢;(0)]
must be replaced by an average of [x(0)[2. |$4(0) > over the Fermi
surface.

The resemblance between the crude estimate (2) and the more careful
one (7) can be seen if one remembers that, if p{r) are normalized in the
atomic volume Q = V/N, fn(0)[2 = N|$x(0)]2, and that p(Hy) o= N 1B
For free electrons, where p(Ey) = 3N, /4By, (7) can be rewritten

1 — 3.,,2.,2 3 4 T 1
(), = s 2
where Ty = Ep/k is called the Fermi temperature.

The most remarkable feature of (7) is the proportionality of 1/7; to
the temperature 7', which is to be contrasted with the much faster
increase at low temperatures of relaxation times connected with lattice
motions, such as thermal vibrations, diffusion, molecular rotation, etc,
- Before comparing the theory with experiment we shall free ourselves
from the two assumptions of nuclear spins } and high applied fields.

B. Nuclear relaxation time and spin temperature

Asrecalled in the introduction to this chapter, a statistical description
of a system of interacting nuclear spins by a spin temperature 7,
[possibly different from that of the lattice, that is, by a density matrix
p o exp(—BH;) with B = 1/kT is, under certain conditions, a good

‘Approximation. Since the state of the spin system is then described

by s single constant B it is reasonable to assume that the spin-lattice
telaxation, that is, the trend of the spin temperature towards the lattice

- temperature, should be described by a single constant 7} according to
the relation

dp _ 1.
P "*77;(/8 Bo)s (8)

'lltam By = 1/kT and 7T is the temperature of the lattice. It is clear

st because of the Curie law, (8) coincides in high fields with the usual
definition of 1} through
dM,

z

1
= M.

~ With the assumption of spin temperature it will be possible to calculate

pin:lattice relaxation times for arbitrary nuclear spins and in
ary applied fields. This is done by ecalculating in two different
the rate of change dE/dt of the average energy K = tr{ps;} of
uclear spin system.
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With the approximation, valid in practically all experimental situa-
tions, of high spin and lattice temperature i
te(styebry  HAD

orfepry =D
where (A#E) = tr{of8}, (1) is the trace of the unit operator, and use h@:s:’
been made of (H#,y == 0. Thus

dE _ D
dt -~ dt

The second evaluation of dE/dt is as follows (1). Let p,, be the:
populations (and pj, the equilibrium populations) of the eigenstates
fm) of the nuclear spin system (unknown in low fields). With @ha
assumption of a high spin temperature

1-8E,

="

The diagonal part of the master equation, which gives the rate of change
of the populations, can be written :

E = tr{pty) = 9

(10

where W, = W, is the transition probability from the state 1m) to
the state [n), induced by the hyperfine coupling (1) summed over all.
electron and nuelear spins. Equation (11) can be rewritten as

w1 (g B)S W,.(E,—E,). e
‘R"{‘ - <1>(Bo B)% mn( n m) { ‘}
Multiplying both sides of (11') by E,, and summing over m, weget
dE 1 -
or, from the relation W, = Wy,
dE 11

G = =575 o) T, Wan(Bu— B

A comparison of (8), (10), and (12) gives

Equation (13) isg quite general and its validity is by /'no me
restricted to nueclear spins relaxed by conduction electrons:
It will be shown now that although each individual transition
ability W,,, cannot be computed in general since the states|m)
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nuclear spin system are not known, the expression (13) can be made
to appear as & trace and calculated explicitly.

The elementary probability w,,, of a conduction electron passing
from a state |k)[s) to a state [kK')|s), |s) and |s') being electron spin
states, is given by

_ 2n(8m 2 . Nle!
o = {2 3 13(e,) 1K 1308 1) x

»y

x{(m|L,|n).(s|s [ [s]s).(nl], tm)}S(Ei—Ef), (14)
where I, and I, are two nuclear spins separated from the electron by
r, and r,. Multiplying (14) by Z(k). Z(k') f(E){1—f(Ey)}, integrating
over d*k and d°F’, and summing over the spin states |s) and |s), we
get with the same simplifying assumptions as in Section A, namely high
lattice temperature and spherical Fermi surface, the total probability
Wonn'

Won xgqam(mllpﬂn)‘(nﬂlqim) (15)
with = yg[gs(())sﬁi’(“l;(’“__%i;ﬁ FTp(ERR, (1)
pad

where kg, the wave number at the Fermi surface, is defined by
h2%%/2m = Ep.
To prove (15) use has been made of
E'Es’ (518, 18)(s | 8g18) = tr{s,sp} = 38,
‘where s, and sg are components of the spin s. From the expression
(18} for 1/T} and (15) for W,,,, we get immediately
' 11, E6HLIALD

—Z 16
A DA A (e

‘The relation (16) could be obtained immediately from the general

‘master equation (66) of Chapter VIII:

do*
dt

= —; [ GO P el

- ’ﬁhh,lf there is a spin temperature, reads

#o % = yp—p) [ BT, PR, ol
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Multiplying both sides by ##; and taking the trace with respect to the

nuclear spin variables, we get

g1
a2

which from the assumed form of the scalar hyperfine Hamiltonian .5,
shows immediately that 1/7) should be given by a relation of the form
of (18), if the correlation time of 3#(t) is very short. ;
Among the coefficients a,,, given by (15"), which can be rewritten as
ay, = @, since they depend only on the distance R, the coefficient
a, is the largest and, unless the wavelength A, = 2n/ky is abnormally
long, all the other coefficients a,, can be neglected for a first approxima-
tion. In the description which uses the concept of the local field
produced at the nuclei by the electrons, the neglect of the a; for k.52 0
corresponds to the assumption that the local electronic fields at twa
different nuclei are incoherent. From (15') we see that ag = (1/1})y, 88
given by (7), whence from (16) i
11 (ALY
T, (T) EHNN
If we write o, == Z-#gs, where Z is the Zeeman energy and

«yf,ss = .}i”d+éﬁx

(18)

is the sum of the dipolar spin-spin coupling and of an indirectisml_u'!_' )

spin-spin coupling (if it exists), it is easily found from (18) that
T, 7 \L), <y il
This leads to a rather interesting conclusion (based solely on the
assumption of incoherence between local fields ‘seen’ by two differenf
nuclear spins): in high fields where (Z?> > (#%g> we have :

(/1) = (D)o
whilst in fields much smaller than the local field

(/1) = 2(1/171)0~

The opposite and less usual extreme of a complete correlation bety
the local fields ‘seen’ by neighbouring spins, that is, of a Fermi
length much larger than a lattice spacing, is expressed by the eq

of all coefficients @, in (16) and yields
3 z [, 1) [, LD (B34 -
4 s G

(Bt H e

D

(Bo—F) f T, =), oy dr, (1T)

L) (2425 )

=

%::t! ‘for the electronic paramagnetic susceptibility in contrast
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Tt is easy to verify that for a dipolar coupling 5, between like spins,
the expectation value (#3) is 5(#3), where 2, is the truncated dipolar
Hamiltonian used for the caleulation of the second moment of the
nuclear resonance line in Chapter IV. Tt follows that if scalar spin-spin

coupling is absent and a single spin species is present in the sample
the equations (19) and (20) can be replaced by ’

TT o [H*+5AHP)/[H2 -5 8 AH?), (20%)
where 8 is 2 for uncorrelated and 3 for strongly correlated electronic
?elds at the nuclei, and AH? is the second moment of the resonance
ine.

An essential feature of the above calculations is the neglect of correla-
tions between the individual conduction electrons. This approach is
inadequate for an evaluation of the relaxation time in the supercon-
ducting state of the metal, where according to the present status of
the theory, strong correlations exist between electrons.

« It is not possible to give an account of the calculation of 7; in the
superconducting state without going into details of the theory of
superconductivity that are outside the scope of this book. This caleula-
tion, which can be found in reference (1), prediets for the relaxation
rate 1/T; in zero field, a steep rise below the critical temperature 7}
followed by a decrease as the temperature goes down. i
‘ Finally, an important relation can be established between the relaxa-
tion time 7T} as given by (7) and the Knight shift given by eqn. (77) of
(Chapter VI
nfS) L
) = R R (21)
o m(kT) viya #p(Ep)]

I.them Xy Is the paramagnetic susceptibility per conduction electron.
If the model of independent electrons is used then, as is well known

- (8nd will be shown in the next section), we have

, %)
Xp = (7/282\7) p(E), (21

2 1hence the so-called Korringa relation:

AH\? fi .
Tf=m) = (e
) = wmle) &
independent electron approximation is known to give incorrect

i .-the so-called collective theory (2). It would therefore seem
Vigable to use in (21) those values Xs and p, for the susceptibility
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and the density of states, taken from this theory. Eqn. (22) must then -

be replaced by :
e
! —ﬁl; h 4nkT Ynl \Xo, PS(EF) 2

where g, and x, refer to the independent electron approximation.

C. Dynamic nuclear polarization in metals (the Overhauset
effect) S ‘

(a) Fermi statistics and non-equilibrium electron spin distribution

In the calculations above it was assumed that the electronic spins
were in thermal equilibrium with the lattice and that the ﬂuctua,ting.
fields they produced at the nuclei could be considered as a part of the
‘lattice’ (as explained in Section IIF (b) (3) of Chapter VIII). There
are, however, situations where the electronic spins are not in equilibrium
with the lattice, as for instance in dynamic polarization experiments: !
when they are being driven by an r.f. field at the electrox_xic Lurmm,- 1
frequency. Such situations have already been examined in C}}a.ptar
VIII where, using the semi-classical model of random functions, it'wag
shown that, in a liquid, for a nuclear spin I coupled to an electronio
spin 8 by a bilinear coupling I.s#(t). S, the rate of change of

(= (LIIT+1)

is given by the formula

K _ iy —igt EC>—so))
T

Al(28)
dt
where {8, = {8 /8(8+1). i
For a scalar coupling and a very short correlation time, it was shown
that £ = —1., o o

At first sight we should expect equation (23) to hold, Withﬁ?lﬁ BAME
value of ¢, for nuclear spins in a metal, where these condit‘mns':at!i'
realized for their coupling with conduction electrons. That this i
actually not so, as will appear shortly, is due to the fact that, beca
of the exclusion principle, the conduction electrons in metals: f
Fermi statistics. It is sometimes argued that this complication can be =
removed if instead of considering statistics of individual electrons the
Gibbs statistical approach is taken, as explained in Chapter V
macroscopic systend made of all the electrons of a sample, wm
thermal equilibrium, obeys Boltzmann statistics and isdescl:l'
a statistical operator p cc exp{—#AF [kT}, where #.5 is the total Ha
tonian of the electrons including their interactions.

el
L
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Although this statement is undoubtedly correct, it should be used
with some circumspection as exemplified by the following erroneous
calculation.

If in order to calculate the electron spin susceptibility we repeat a
reasoning used in Chapter ITI, and write the electron Hamiltonian in
the presence of a magnetic field Hy a8 5 = KF — Hy M,, we get

_ tr{exp(—ﬁ%"/kT).]tfz}
M) = tr{exp(—##[kT)}

If we assume that F is independent of the spins and thus commutes
with M, and that [ M, H,| < kT, both legitimate assumptions, we get
tr{ M2 H,
{1} L7’
that is, the Curie law, well known to be invalid for the paramagnetism
of conduction electrons. The error is due to the fact that the sum over
states expressed by the traces (24) or (24') should be restricted aceord-
ing to the Pauli principle to eigenstates of # that are completely
antisymmetrical with respect to the orbital and spin coordinates of all
electrons, whereas the trace technique takes in all eigenstates of ¢,
antisymmetrical or not. If the trace technique is to be retained the
operation tr{pM,} should be replaced by tr{PpM, P}, where P is the
projection operator over antisymmetrical states only. This operator
dlearly contains spin variables, thus making it possible for the result
(24') to be wrong. For that reason, whilst keeping the general Gibbs
approach in mind, and using it with caution for general arguments,
¥e shall return for practical caleulations to the one-electron description.
In the presence of s magnetic field H, = H,, the Fermi distribution
function f = [1+exp{(E—EF)/kT}]'1 describing electrons in thermal
equilibrium has to be replaced by two functions f+: one for each sign

(24)

ALy =~

(247

of & )
- - Bt o, — Bp\1-
fo= [1+eXP(—~,TT-—- : (25)
Where § represents the kinetic energy of the electron and w, = —y, H,

- \ ;gl’ﬁweI L kT, f, = fd-4ho, (df/dE), where f is given by (2'), and df/dE
by (3

?’ fo = FF (Hiw )8(E— B,
The total magnetization of the N electrons of the sample will be
M = Yyt [ p(B) S, ~f)AB = Hyky2h%)p(E,) (25)

I-:ti-“'lwprda,nce with (21').
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The distribution (25) describes electronic spins in thermal equilibrium.
The electronic spin relaxation times, being of the .order of 10“1" second
or longer, are much longer than the relaxation times r relative to th.e
electronic kinetic energy, which are of the order of 1012 sec. _It is
therefore a reasonable approximation to assume that electr'ons of elther‘
gpin are in equilibrium among themselves and are described by two

distributions:
B o, — Bf\|
f.(B) = {1 +exp(_,é:_%_m’___ll)} (26)

with values E# for their Fermi energies, which are usually differem.
and become equal when the spins are in equilibrium with the other
degrees of freedom.

The disappearance of electron paramagnetism caused by the satura-
tion of the electron resonance corresponds to f, = f., or :

Yiw,— By = —Hiw,—EF, Ef —E7 = fiw, (287)

If the departure of E# from the equilibrium value Ejy is small cors

pared with k7T, the conservation of the total number of the electrong
leads to B+ Bz = 2Hy, whence, writing B = Ep+-ie, we get |

d;
£.(B) = (B4, — ) 22 f(B) £ (i, 1) 7

o fF o, —S(E—Ep). (205

The expectation value (S, for one electron is obtained from (27):

_ L _ B = (e—Hw)p(Ey), . (28)
@ =g [ (e—f o) (e—fwo(Br), | (28) 8

2N
whence
2N
plEg)
where the equilibrium electron polarization &, is given by

g — —hoop(Br) _ v ilop(Ep)
°T TN 2N

€ = E},‘:—E} =

Equation (28’) can then be rewritten as

¢
ST S i C2) Sj 2],

We shall define the saturation parameter s by the relation’ .

Ef — By = shw,.

9N : 2
= ey S “'S AT A |
{80 +Hiew, o EF){< o o} ; (m
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If the temperature is sufficiently high for the expansion (27) to be valid,
according to (28"), . Sy—< Ss>.
S

On the other hand, whatever the temperature, we can still define s
by the relation (281). Thermal equilibrium corresponds to B = Eg,
or § = 0, equality of the populations of the two spins levels to s = 1,
intermediate situations to 0 < s < 1.
(b) Dynamic polarization

To demonstrate the possibility of dynamic polarization in metals
(Overhauser effect) the assumption of high temperature is not necessary,
as will be shown below.

Suppose for simplicity that the nuclear spins are 3. The extension

- to nuclear spins I > } is straightforward if spin-spin interactions main-

tain among them a spin-temperature as explained previously. The

- equation for the rate of change of n_, the population of nuclei with

spins up, normalized to n,-+n_ = 1, can be written

s = 2 [ 4G 18I E B0 x
X {r_f (B —Hw,— )1 —f(B)]—n, f (E)1—f( B—Fi(w,—w)]}
(29)

' ¥rom the definitions (26) of f, and f_, writing that the curly bracket
in (29) vanishes, we obtain for the steady-state value of n, /n_

n\ _ (B —By—hw,
ER s =

If the electron spins are in thermal equilibrium Bf = K7, and n./n_

- is given by the nuclear Boltzmann factor, exp(—#%aw,/k7), as it should
‘be. If, on the other hand, the electron spin polarization is made to
‘¥anish by a saturating r.f. field at the electron frequency w,, according

t0/(26'), E #—EB7 = fiw, and the nuclear polarization is greatly enhanced

b e o[ > [o,:

) fiw,—aw,)
(n~) = exp{———-——.kT . (31)
TFor incomplete saturation represented by the saturation parameter
l<s< 1)
a3 exp Asery—wy) . (31)
n_ kT

% ﬁhﬂ i8 the Overhauser effect (3),



