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Abstract
The longitudinal muon spin relaxation in metals and semimetals is suggestive
of a form of Korringa relaxation in which the hyperfine interaction between
the muons and the conduction electrons plays a dominant rôle. We give an
alternative derivation of the Korringa law and show how muons may thus be
used to study interactions with conduction electrons at interstitial sites. The
alternative derivation links the topic to the use of implanted muons both as
probes of magnetic and correlated-electron systems and as proton analogues,
modelling the behaviour of hydrogen impurity in metals and semimetals.

1. Introduction

The µSR technique of muon spin relaxation is increasingly used to study a variety of condensed
matter systems [1–3]. In these experiments a beam of almost completely spin-polarized muons
is stopped in the sample under investigation. Following implantation the muons thermalize by
Coulombic processes in 0.1–1 ns, in metals retaining the full initial polarization. The observed
quantity is then the subsequent time evolution of the muon spin polarization on a microsecond
timescale. This can be recorded by counting emitted decay positrons, e.g. in directions forward
and backward with respect to the initial polarization, thanks to the asymmetric nature of the
muon decay, which takes place in a mean time of 2.2 µs.

In many systems of current interest the relaxation function provides information
concerning magnetic ground states and spin correlations associated with magnetically
fluctuating systems [4]. Here we are concerned with longitudinal relaxation due to dynamical
interactions. This is T1-relaxation in NMR parlance and can be measured in magnetic fields
applied parallel to the initial muon polarization or indeed in zero field. (The decay asymmetry
can equally well be measured in null external field so zero-field measurements are something
of a µSR speciality; in this paper we do not consider the T2-relaxation due to static, e.g. nuclear
dipolar, interactions, which can also be measured in zero field or in a transverse-field muon
spin-rotation experiment.) In non-magnetic metals, longitudinal or spin–lattice relaxation has
generally been thought to be unobservably slow on the µSR timescale, but sufficiently sensitive
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measurements have lately revealed significant muon spin–lattice relaxation in a variety of
metals and semimetals [5]. Measured in a longitudinal magnetic field, the relaxation rate is
independent of field up to several tenths of a tesla and generally increases monotonically
with temperature. This is highly suggestive of a form of Korringa relaxation which is
associated with the fluctuating hyperfine interaction between the implanted muons and the
conduction electrons.

We discuss this effect in section 2 and present a description of muon Korringa relaxation
in section 3. Section 4 contains a discussion of the results and an outline of future experiments
and analysis.

2. Muon Knight shift

The magnetic properties of metallic systems which show no long-range magnetic ordering
are often dominated by the conduction electrons. The magnetic susceptibility is then the sum
of the Pauli paramagnetism (associated with the conduction electron spins) and Landau dia-
magnetism (associated with the conduction electron orbital motion). The conduction electronic
spin susceptibility can itself be measured using nuclear magnetic resonance (NMR) via either
the Knight shift or longitudinal relaxation. We discuss the first effect in this section and turn
to the second in the following section.

The Knight shift [6] is a small shift, �ω, in the NMR frequency, ω, which is due to
the contact interaction between the conduction electron spin and the nuclear spin. It can be
understood by imagining that individual conduction electrons hop on and off a given nucleus
and therefore that the net hyperfine coupling which the nucleus experiences is the result of
averaging over all the electron spin orientations. This net hyperfine coupling will be zero
without an applied field because the average of the spin orientations will vanish; the net
hyperfine coupling will be non-zero in a non-zero static field because this will polarize the
electron spins. The Knight shift, K = �ω/ω, is therefore proportional to the conduction
electron density at the nucleus (which expresses the dependence on the coupling strength) and
also to the Pauli spin susceptibility (which expresses the dependence on the degree to which
an applied field polarizes the electrons).

Knight shifts are not merely the preserve of host nuclei, but can be measured with implanted
muons. Experimentally one looks for a shift in the muon spin-precession frequency under the
application of a known transverse field. Muon Knight shifts are commonly measured in heavy-
fermion systems by measuring the precession frequency of implanted muons in a single crystal
as a function of the orientation of the crystal axes with respect to the applied field [7]. The angle
dependence arises because there is a contribution to the muon Knight shift from the dipolar
interaction of the muon with localized f moments [8]. Such measurements are a powerful tool
for identifying muon sites in d- and f-electron systems [9, 10]. Nevertheless, for the systems
of interest in this paper, there is no such contribution to the muon Knight shift, Kµ. The effect
is entirely due to the Pauli susceptibility and is therefore proportional to g(EF), the density of
states at the Fermi level, so

Kµ ∝ Aχ(0, 0) ∝ Ag(EF) (1)

where A is the hyperfine coupling constant and χ(q, ω) is the dynamical susceptibility.

3. Muon Korringa relaxation

A second method of probing the electron spin susceptibility is via measurement of the
longitudinal relaxation of nuclear spins. It is well known that the two methods are closely
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connected, the static average of the hyperfine interactions causing the Knight shift and
fluctuations about this average providing the mechanism for relaxation. The dominant T1-
processes are flip–flop transitions of the electron and nuclear (or muon) spins, in which the
difference in electron and nuclear Zeeman energies is taken up by a change in kinetic energy
of the conduction electron. The exchange in energy between the nucleus and the conduction
electrons is very small, so only electrons within kBT of the Fermi surface are able to participate
since only these have empty states nearby into which they can make a transition. Thus for
simple metals the spin–lattice relaxation rate T −1

1 is proportional to temperature, as enshrined
in the Korringa relation

1

T1
= 4πkBT K2

h̄

(
γn

γe

)2

(2)

which also shows that T −1
1 is proportional to the square of the Knight shift [11]. The direct

proportionality is not expected to extend to very high temperatures or to apply when there is
a strong variation in density of states at the Fermi surface, e.g. in the semimetals.

In the original treatment by Korringa, nuclear relaxation was formulated in terms of spin-
flip scattering of the conduction electrons. Equation (2) must apply equally to muon Knight
shifts and spin relaxation. In making the link to muon spin relaxation in magnetic metals
however, it is useful to consider an alternative derivation. In this approach the muon spin-
relaxation rate λ = T −1

1 is written in terms of the response function S(q, ω) (also known as
the dynamic structure factor [12]) as

λ = 1

T1
∝

∑
q

A2(q)S(q, 0) (3)

where A(q) is the q-dependent hyperfine coupling which involves a form factor [13] which
depends on the muon site. This connection occurs because the relaxation rate is proportional to
the correlation function of the fluctuating fields at the muon site which can be converted into a
sum over all q of the zero-frequency response function. We then use the fluctuation-dissipation
theorem

S(q, 0) = lim
ω→0

[
n(ω) + 1

π
χ ′′(q, ω)

]
= lim

ω→0

kBT

πh̄

χ ′′(q, ω)

ω
(4)

where n(ω) = (exp(h̄ω/kBT )−1)−1 is the Bose factor, χ(q, ω) = χ ′(q, ω)+ iχ ′′(q, ω) is the
dynamical susceptibility and the equality holds at high temperature where n(ω) → kBT/h̄ω �
1. Before proceeding, it is worth examining the form of the dynamical susceptibility. In
many magnetic systems this is often modelled as a damped simple harmonic oscillator in the
overdamped limit and at low frequencies such that

χ(q, ω) = χ(q, 0)

1 − iω/�(q)
(5)

where �(q) becomes the linewidth of the corresponding Lorentzian lineshape observed in a
neutron scattering experiment and hence that

χ ′′(q, ω)

ω
= χ(q, 0)�(q)

ω2 + �(q)2
. (6)

This expression is shown in figure 1(a). Hence using equation (4), the zero-frequency response
function can be written as S(q, 0) = χ(q, 0)kBT/h̄π�(q) and so the relaxation is then given by

λ ∝ kBT
∑

q

A2(q)χ(q, 0)

�(q)
. (7)
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Figure 1. (a) The frequency-dependent imaginary part of the susceptibility of an overdamped
mode. (b) The zero-frequency wave-vector-dependent susceptibility for a free-electron gas. (c) The
frequency-dependent imaginary part of the susceptibility of an electron gas in the limit of small
frequency.

This model works well for a large class of magnetic fluctuations, but is not appropriate for the
electron gas since this does not behave like an overdamped oscillator. We need to examine
instead the dynamical susceptibility of the electron gas, and for simplicity we consider the
isotropic free-electron gas. The zero-frequency wave-vector-dependent susceptibility χ(q, 0)

for a free-electron gas is given by the Lindhard expression

χ(q, 0) = χ(0, 0)

2

(
1 +

4k2
F − q2

4qkF
log

∣∣∣∣ q + 2kF

q − 2kF

∣∣∣∣
)

(8)

where χ(0, 0) = µ0µBg(EF) is the Pauli susceptibility and g(EF) is the density of states
at the Fermi energy. This expression is plotted in figure 1(b). The kink in the curve which
appears at q = 2kF is due to the existence of the Fermi surface (the diameter of the Fermi
sphere is 2kF). This kink becomes progressively more severe as the dimensionality is reduced
down from three dimensions [14]. This function is entirely real, but we are interested only in
the imaginary part of the susceptibility, which is therefore zero at zero frequency. For small
frequency ω, the imaginary part of the dynamical susceptibility is given by

lim
ω→0

χ ′′(q, ω)

ω
= χ(0, 0)π

2vFq
∝ [χ(0, 0)]2 h̄

k2
Fq

(9)

where vF and kF are the Fermi velocity and Fermi wave vector respectively [15]. The imaginary
part of the dynamical susceptibility is plotted in figure 1(c). We then use the expression derived
earlier for the muon relaxation rate which is

λ ∝ kBT
∑

q

A2(q) lim
ω→0

χ ′′(q, ω)

ω
. (10)

If the q-dependence of A(q) can be ignored, then this becomes

λ ∝ kBT [Aχ(0, 0)]2 ∝ K2
µT (11)

which is the Korringa result.
For the non-interacting electron gas the response stretches over a range of frequencies on

a scale measured by EF. As interactions are switched on, the response becomes enhanced,
particularly at low spatial and temporal frequencies [16]. This then enhances both the Knight
shift and the muon spin-relaxation rate, but by differing amounts because the former is
proportional to χ(0, 0) and the latter is proportional to

∑
q A2(q)χ ′′(q, ω)/ω and therefore

samples a range of q. Disorder also plays a significant rôle in enhancing the Korringa relaxation
at the expense of the Knight shift [17].
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4. Discussion

We now discuss the extensions that must be made to this treatment for the specific case of muons
in metals and semimetals. Following implantation, muons thermalize at specific sites before
data taking begins. These are invariably intrinsic interstitial sites. Depending on temperature,
the muons may subsequently diffuse between adjacent equivalent sites during data taking.
Excluding the case of impure or defective material (where the muons may also trap at defect
sites), this diffusion is unimportant for the measurement of longitudinal relaxation, be it by the
Korringa mechanism or by magnetic fluctuations: usually the hyperfine fluctuations are fast
compared with the muon hop rate and dominate the relaxation. It is necessary to consider the
local electronic structure, however. This will be essentially identical to the screened-proton
state of interstitial hydrogen. The local conduction electron density is enhanced, responding
to the interstitial positive charge. In the above derivation we tacitly assume that the screening
charge is a superposition of conduction band states, the local build-up affecting only the strength
of the coupling.

In the semimetals, the conduction electron density can be insufficient to screen the muon
charge effectively. In this case, a hydrogen-like bound state of individual electrons can exist.
Transitions in and out of such a localized paramagnetic state can considerably enhance both
the Knight shift and the relaxation rate. The µSR data for the semimetal Sb show signs of this
incipient muonium formation [18, 19]. In graphite, it may be possible to describe the muon
response in terms of the Korringa law, using the particular form of g(EF) for this material
[20], although in view of the low electron density we favour the involvement of a localized
paramagnetic state [5]. Atomic muonium itself would be unstable against chemical reaction
with the graphitic layers, leading in this case to a molecular radical state which is described
in an accompanying paper [21]. In semiconductors, régimes of long-lived and short-lived
muonium states can readily be distinguished. A second accompanying paper identifies a
resultant paramagnetic shift from the muon Larmor frequency in Si at high temperature and
discusses the relation with the particularly strong muon spin relaxation in this case [22]. A
consequence of the small density of states at the Fermi level found in semimetals is that states
away from EF play a rôle in relaxing the muon spin at high temperature. This effect can result in
the breakdown of the proportionality between the muon spin-relaxation rate and temperature.

In summary, we have shown that muon spin relaxation in metals and semimetals is
suggestive of a form of Korringa relaxation. The size of the effect is controlled by a form factor,
which depends on the muon site, and the imaginary part of the dynamical susceptibility, which
can be enhanced by interactions and disorder. Spin and charge exchange effects on localized
defect states can cause additional relaxation in semimetals and semiconductors. In magnetic
metals, muon or nuclear spin relaxation is typically dominated by moment fluctuations,
correlations or critical phenomena. Our derivation shows that the same formalism can be
used to describe Korringa relaxation in non-magnetic metals, thereby linking these topics. For
interstitial probes such as the positive muon, studies of Knight shift and spin relaxation promise
to link the static aspects of defect charge screening to aspects of dynamics and temperature
dependence.
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