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and consider this to be the appropriate measure of the goodness of
fit. We have used the same symbol x? defined earlier in Equation
(5-19) because this is essentially the same definition in a different
context,

Our method for finding the optimum fit to the data will be to
minimize this weighted sum of squares of deviations x? and, hence,
to find the fit which produces the smallest sum of squares or the
least-squares fit.

6-3 INSTRUMENTAL UNCERTAINTIES

If the quantity y is one which can be measured with a phys-
ical instrument, the uncertainty in each measurement generally

comes from fluctuations in repeated readings of the instrumental

scale, either because the settings are not exactly reproducible due
to imperfections in the equipment, or because of human impreci-
sion in observing the settings, or a combination of both. Such
uncertainties are called insfrumental because they arise from a
lack of perfect precision in the measuring instruments (including
the observer).

We can include in this category experiments which deal with
measurements of such characteristies as length, mass, voltage,
current, etc. In the discussion which follows, we shall consider
first the simpler case where the absolute uncertainties are equal
throughout the entire experiment. Later we shall consider the
refinement of utilizing the standard deviation as a weighting fac-
tor corresponding to the precision which may vary from one part
of the experiment to another as when the scale factor is changed
or the scale is non-linear. In the next section we will consider
uncertainties resulting from statistical fluctuations rather than
from experimental precision.

For example, we include in this category such experiments as
that of Example 6-1 illustrated in Figure 6-1 in which the observed
quantity is the temperature T', measured with a thermometer con-
sisting of a thermocouple and a meter with a linear scale. The
fluctuations in the data result from errors in reading the meter,
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and these errors are just as large for readings near the low end of
the scale as for readings near the high end (ignoring errors in cali-
bration). So long as we do not change the scale to measure
temperatures outside the reasonable range, the absolute values
(rather than the relative values) of the uncertainties will be the
same for all measurements.

Minimizing x* In order to find the values of the coeffi-
cients a and b which vield the minimum value for x? we use the
method of caleulus described in Appendix A in the same way asin
Section 5-1, extrapolated to minimizing the function with respect
to more than one coefficient. The minimum value of the function
x? of Equation (6-6) is one which yields a value of 0 for both of the
partial derivatives with respect to each of the coefficients

82_61 e
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(6-7)

i

where we have for the present considered all of the standard
deviations equal ¢; = 0.

These equations can be rearranged to yield a pair of simulta-
neous equations

Ey,- = Ta "f' Zbil?;‘ == GN + bEu

Eziyi Za."cg + 26731’2 = azxi + bE.’l‘,z (6*8)

il

where we have substituted N for Z(1) since the sum runs for
{=1 to N. This development is discussed more fully in
Appendix A.

We wish to solve Equations (6-8) for the coefficients a and b.
This will give us the values of the coefficients for which x?, the
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Program 6-1 LINFIT Least-squares fit to a straight line.

.

|
|

SUBROUTINE LINFIT

PURPOSE

MAKE A LFAST-SQUARES FIT TO DATA WITH A STRAIGHT LINE
Y = A + BxX

USAGE
CALL LINFIT (X, Y, SIGMAY, NPTS, MODE, A, SIGMAA, B, SIGMAB, R)

DESCQ!PT!ON 0OF PARAMETERS
- ARRAY OF DATA POINTS FOR INDEPENDENT VARIABLE

Y - ARRAY OF DATA POINTS FOR DEPENDENT VARIABLE
SIGMAY - ARRAY OF STANDARD DEVIATIONS FOR Y DATA POINTS
NPTS - NUMBER OF PAIRS OF DATA POINTS
HMODE - DETERMINES METHOD OF WEIGHTING LEAST-SQUARES FIT
+1 (INSTRUMENTAL) WEIGHT(1) = 1,/SIGMAY(1)*x*2
0 (NO WEIGHTING) WEIGHT(H) = 1.
-1 (STATISTICAL) WEIGHT(1) = 1./Y(1)
A - Y INTERCEPT OF FITTED STRAIGHT LINE
SEGMAA ~ STANDARD DEVIATION OF A
B - SLOPE OF FITTED STRAIGHT LINE
SIGMAB ~ STANDARD DEVIATIOM OF B
R - LINEAR CORRELATION COEFFICIENT

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

MODIFICATIONS FOR FORTRAN 11
OMIT DOUBLE PRECISION SPECIFICATIONS
CHANGE DSORT TO SORTF IN STATEMENTS 67, 68, AND 71

MO0 O0NO0000000N0aNO0a0n0

|
|

sum of squares of the deviations of the data points from the calcu-
lated fit, is a minimum. The solution can be found in any one of
a number of different ways, but, for generality for later similar but
more complex situations, let us use the method of determinants.
Appendix B contains a discussion of this method and gives the
rules for obtaining a solution for any number of simultaneous
equations.
The solutions are:

_ 1 Eiyg 2 . 1 2%, e S 2.
=3 1 Sy x| A (Z22y; — ZaZzy)
1IN Ziyi 1 3
= Zx; Ex;yf% T A N2z — Za:2y,) (a2
N  Zux
— e 2
A P— = NZz? — (Zx;)

Table 6-1 shows a sample calculation for the data of our first
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Program 6-1 LINFIT (confinued)

SUBROUTINE LINFIT (X,Y,SlGMAY,NPTS,NOD?,A,SIGMAA,B,SiGMAB,R)
DOURLE PRECISION SUM, SUMX, SUMY, SUMXZ, SUMXY, SUMY2

DOUBLE PRECISION X1, YI, WEIGHT, DELTA, VARNCE

DIMENSION X(1), Y(1), SIGMAY(1)

ACCUMULATE WEIGHTED SUMS

OO0

11 SuM = 0.
SUMX = 0.
SUMY = 0,
SUMX 2 b,
SUMXY
SUMY 2

21 DO 50 1
X1o= %)
Yi o= Y(4)
PFO(MODE) 31

31 §F (Y1) 34, 38, 32

32 WEIGHT = 1. / ¥I
GO TO &1

34 WERGHT = 1, / (=YD
GO- TG 41

36 WEIGHT = 1.

GO, TO &1

38 WEIGHT = 1. / SI1GMAY(1)**2

41 SUM = SUM + WEIGHT

SUMX = SUMX + UEIGHT#*XI

SUMY = SUMY + WEIGHT=*Y!

= +
+
+

[

Q.
0.

SUMX2 SUMX2 WEIGHT*XI*X1
SUMXY = SUMXY WEIGHT*X Y1
SUMY2 = SUMY2 VEIGHT*Y 1 #Y1

50 CONTINUE

@

CALCULATE COEFFICIENTS AND QTAPOAQ“ DFViAT!OHS

o~

i
Casde (AN

[ XeXe]

FpEcn =t
51 DELTA = SUM*SUMX2 - SUMX#SUMX .
A = (SUMX2*SUMY - SUMY*SUMXY) / DELTA
53 B = (SUMXY+SUM - SUMX#SUMY ) / DELTA
&1 PEOUMDDEY 62, 64, 62
62 VARNCE = 1.
60 TO B7
64 C = NPTS - 2
VARNCE = (SUMY2 + A*A*SUM + R*BxSUMX2
1 -2, x(A*SUMY + BaSUMXY = A*B*SUMX)) / C
67 SIGMAA = DSQRT(VARNCE*SUMX2 / DELTA)
68 SIGMAR = DSORT(VARNCE+SUM / DELTA)
71 R = (SUM#SUMXY = SUMX*SUMY) /
1 DSGRT(DELTA*(SUM*SUMY2 - SUMY*SUMY) )
RETURN
END

example. The calculation is straightforward, though tedious.
We accumulate four sums (Szi, Sy = =T:, Zxd, and Zzy =
2T, and combine them according to Equations (6-9) to find
numerical values for a and b.

Program 6-1 The same method of calculation is also
illustrated with the computer routine LINFIT of Program 6-1.
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This is a Fortran subroutine to calculate the coefficients a and b
for a least-squares fit of a straight line to an array of data points
for any one of three different experimental conditions. The input
variables are X, v, sieMAY, NP1, and MODE, and the output
variables are A, SIGMAA, B, SIGMAB, and R.

For the calculation discussed above, following the method of
Equations (6-9), the variable MopE must have the value 0. This
indicates to the subroutine that we have not considered any
weighting of the fitting procedure by including the standard
deviations of individual points. The variable NpTs represents
the number of pairs of data points Np18 = N. The independent
quantities z; are assumed to be stored in the array x, and the
dependent data points are assumed to be stored in the array v,
with the ordering identical for the two arrays. The array sioMay
may be ignored; in this mode the subroutine does not use it or
modify it.

The four sums given above (Zz;, Zy;, Zx.% and Zz.) are
accumulated in statements 41-50 as part of the po loop starting
at statement 21. The variable WrIGHT is given a value of 1 in
statement 36 and can be ignored. The calculations of Equations
(6-9) are carried out in statements 51-53, with N replaced by
suM = Z(1). The coefficients A = a and B = b are returned to
the calling program as arguments of the calling sequence. The
remainder of the subroutine pertains to material not yet
discussed.

Weighting the fit If the fluctuations in the data are due
to instrumental errors, but for reasons of scale changes, non-
linear scales, ete., the uncertainties are not equal throughout, it is
necessary to reintroduce the standard deviation from Equation
(6-6) as a weighting factor into Equations (6-7) to (6-9). Instead
of minimizing the simple sum of the squares of deviations as in
Equations (6-7), we weight each term of the sum in x? acecording
to how large or small the deviation is oxpected to be at that point
before summing.

Minimizing x® as given in Equation (6-6), Equation (6-7)
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becomes

a 1 2
9 2. EI__ - .._b;iul
8X 3 i‘z(yl a 17)

= _22[—1? (y: — a — ba )] 0
[
(6-10)
a 3 1
= x¥ = = — (y: — a — bxy)?
ab X 8b2[o’i2 (y: — a %) ]
= —22[(% (yi — a — bl’g)} =0

These equations can be rearranged to yield a pair of simultaneous
equations analogous to Equations (6-8).

RSO

2
N8 xi z‘ﬁ.
L oo ab0i2+b o

The solutions are similar to Equations (6-9).

e 5;’53 wy V
Aizxum (E Z E 2 )

1| 2o Lo

32 Y

*(zmz“f $232)

A= z"l 2\- 1\‘%’13-(2&)2
L 2 2 2
Z z :12 Lo Loy o;

Such a ealculation is even more tedious than that of Equa-
tions (6-9) and presupposes a knowledge of the magnitudes of the
standard deviations o; for each of the data points. Fortunately,

(6-11)

b =

(6-12)
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we are generally only interested in the relative uncertainties of
various sections of our data when we modify scale factors, ete.
For such purposes, the standard deviations ean have any arbi-
trary overall normalization (e.g., the smallest value of ¢;* may be
set equal to 1 so that all the other values are integers).

The method of calculation for the general case when the
values of o; are known is illustrated in the subroutine LiNrIT with
the variable MopE given a value of + 1 (or any positive integer).
The standard deviations e; must be stored in the array siaMAY
with the same ordering as the data in arrays x and v. The cal-
culation is the same as for the earlier example, except that the
variable weiGHT is given the value 1. / (stamay(1))? in statement
38 for each term so that the sums accumulated are those required
for Equations (6-12).

6-4 STATISTICAL FLUCTUATIONS

If the quantity y represents the number of counts in a detec-
tor per unit time interval, as in Example 6-2, then it is generally
true that the uncertainty in each measurement y; is directly
related to the magnitude of y (as discussed in Section 3-2), and,
therefore, the standard deviations ¢; associated with these meas-
urements cannot be considered equal over any reasonable range
of values. Such uncertainties are called statistical because they
arise not from a lack of perfect precision in the measuring instru-
ments, but from statistical fluctuations in the collections of finite
numbers of counts over finitely long intervals of time.

In our eounting experiment of Example 6-2, for example, we
would expect from the straight-line fit to the data that we should
receive about 100 counts in our detector during the first time
interval. What we mean by this is that if the counting rate were
continued indefinitely at the same rate for a large number of inter-
vals, the average number of counts received per interval would be
very nearly 100. Since the counts are distributed randomly in
time, however, we would expect to receive more than 100 counts
in some intervals and fewer than 100 in others. The fluctuations
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of the number of counts actually received in each interval around
the average number of counts are statistical fluctuations related
to the probability of receiving more or fewer than the average
number of counts in any time interval.

There can be instrumental uncertainties as well contributing
to the overall uncertainties. We can determine the time intervals
with only finite precision, and the same precision applies to the
determination of the starting times f;, though this is generally a
negligible correction. These are actually uncertainties in the
independent quantity z, but we have agreed to assign them
arbitrarily to the dependent quantity y. For counting experi-
ments these contributions to the overall uncertainty are generally
ignored on the assumption that the statistical fluctuations
dominate. Where this is not true, the standard deviations to be
used in Equations (6-10) to (6-12) as weighting factors must be
the root sum squares of the standard deviations for the experi-
mental deviations o;(z;) in x and the statistical deviations o (i)
in y as given in Equation (6-1).

o = 0‘i2($i) -+ 0;‘2(%)

Estimate of ¢ If the fluctuations in the measurements y:
are statistical, we can estimate analytically what the standard
deviation corresponding to each observation is, without having to
determine it experimentally. If we were to make the same meas-
urement repeatedly, we would find that the observed values were
distributed about their mean in a Poisson distribution (as dis-
cussed in Section 3-2) instead of a Gaussian distribution. We can
justify the use of this distribution intuitively by considering that
we would expect a distribution which is related to the binomial
distribution, but which is consistent with our boundary conditions
that we may receive any positive number of counts, but no fewer
than O counts, in any time interval.

One immediate advantage of the Poisson distribution is that
the standard deviation is automatically determined.

B

Y (6-13)
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