
Measurements of the 
Muon Decay Spectrum 

from TWIST
Robert MacDonald, University of Alberta

for the TWIST collaboration

• Physics of Muon Decay
• TWIST experiment
• TWIST results to date
• Implications

CAP Congress, 17-20 June 2007

High precision experiment with ambitious goals -- as much as an order of magnitude improvement 
over previous decay spectrum measurements.



Muon Decay

• EM radiative corrections calculable

• Strong interactions are at < 1e-6 level
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Very clean environment for studying the weak interaction.

Radiative Corrections calculated to next-to-leading log alpha^2.

Muons really have only one decay mode plus RCs.  Simplifies data!

“4-fermion” interaction at muon decay energies: simplifies interpretation!
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Notation of Fetcher & Gerber (PDG).

Most general local, derivative-free four fermion interaction.

Each interaction has its own coupling constant.
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Decay Matrix Element

In Standard Model (“V-A”):

gV
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Decay (“Michel”) Spectrum
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∝ FIS(x; ρ, η) + FAS(x; δ)Pµξ cos θ

Decay spectrum by Michel, Kinoshita & Sirlin (ignoring RCs)

The Michel Parameters are bilinear combinations of the coupling constants.  (See PDG.)
theta = theta_spin!

TWIST is insensitive to eta, at least directly.  And note that xi appears as PmuXi!  :(

TWIST plans a 10x improvement, except eta.  Already published 2-3x.
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The TWIST Experiment
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TRIUMF Weak Interaction Symmetry Test

Trigger: thin scintillator.  (Unbiased!)

Muons enter field in vacuum, slow in chambers and stop in target.

Magnetic field: maintains mu+ polarization; allows e+ momentum measurement



The TWIST Detector

6

Tracking
Chambers

Tracking
Chambers

target

Simple design (incl. planar chambers)

Symmetric, high-precision construction



Muon Beam Monitor
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Pions decay at rest --> polarized muons

Muon beam emittance in fringe field very important to polarization.

TEC located at our nominal final focus, just entering the solenoid fringe field.
X and Y chambers measure beam profile in position and angle.

Very low mass.

Take data with and without TEC.
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Blind Analysis
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Can study consistency without losing blindness.

Simulation includes detector response.
“Data vs MC” comparison cancels many systematics and spectrum distortions.
- e.g. Delta ray rate.

Main systematics come from differences between MC and reality:
- Input info (chamber drift times, beam profiles, etc)
- Physics processes
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d2Γ
dx d(cos θs)

∝ FIS(x; ρ, η) + FAS(x; δ)Pµξ cos θ

Spectrum Fitter

Michel Spectrum is linear in these parameters.  (Very handy!)
- xi and delta appear as a product.

Derivative spectra are fully simulated and analyzed just like the MC and data spectra.

- full detector response is included



Spectrum Fitter
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Spectrum Fitter
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Michel Spectrum is linear in these parameters.  (Very handy!)
- xi and delta appear as a product.

Derivative spectra are fully simulated and analyzed just like the MC and data spectra.

- full detector response is included



Determining Systematics
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Black Box values don’t matter here.

Can also use the same simulation but change the analysis (e.g. alignment, magnetic field).
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Verifying our Simulation
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Muon stops 
here decay positron

fit track
upstream

fit track
downstream

Do this in data and simulation -- direct comparison!

Difference between the two fits: physics processes (various eloss & scattering), resolution
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Top and bottom are lin/log views.

TWIST Monte Carlo provides excellent description of the hard interaction physics.

Multiple scattering well reproduced.

Small differences seen in dE/dx (few keV).



TWIST
published

Total
Direct

38.0 syst
6.0 stat

Indirect

uses Pμξδ/ρ 
measurement

40
(90% CL)

TWIST
published

current
(preliminary)

Total
11.2 syst
6.6 stat

6.4 syst
2.4 stat

TWIST
published

current
(preliminary)

Total 9.3 syst
4.4 stat

5.4 syst
1.4 stat

13

Units of 0.0001
Systematics

Phys. Rev. Lett. 94, 101805 (2005)ρ
Phys. Rev. D 74, 072007 (2006)Pμξ

Phys. Rev. D 71, 071101(R) (2005)δ

Publications linked from our website.
Totals are 2-3x better than pre-TWIST uncertainties!
And these are _current_ leading systematics, and current expectations;

 final goals are another factor of two better.

Currently focussing on rho/delta improvements, and taking new data etc.

Theory is also an important systematic now -- 1-3e-4!  (next-to-leading log alpha^2)

TWIST is systematics-limited -- polarized muons are abundant at TRIUMF.



Systematic TWIST
published

current
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positron 
interactions 5.5 1.6

chamber 
response 5.6 5.2

momentum 
calibration 2.9 2.2
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TWIST

published
current
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positron 
interactions 4.6 2.0

chamber 
response 5.1 3.2

momentum 
calibration 2.0 1.1

Systematic
TWIST

published

fringe field 
depolarization 34.0

stopping target 
depolarization 12.0

chamber response 10.0

positron 
interactions 3.0

momentum 
calibration 2.0
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Improving our Systematics
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positron interactions
precision target geometry,
improved chamber spacing,

investigating MC tuning

momentum calibration new calibration techniques

chamber response
online monitoring,

increased instrumentation,
drift time measurements

fringe field
depolarization

beam monitoring with TEC,
beamline alignment & steering

stopping target depolarization
aluminum & silver targets,

depolarization studies

these are just examples...

Includes improvements since publication data (taken 2002), and ongoing work.



Limits on Weak Couplings
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|gS
RR| < 0.066(0.067) |gV

RR| < 0.033(0.034) |gT
RR| ≡ 0

|gS
LR| < 0.125(0.088) |gV

LR| < 0.060(0.036) |gT
LR| < 0.036(0.025)

|gS
RL| < 0.424(0.417) |gV

RL| < 0.110(0.104) |gT
RL| < 0.122(0.104)

|gS
LL| < 0.550(0.550) |gV

LL| > 0.960(0.960) |gT
LL| ≡ 0

Recent muon decay global analysis (90% C.L.),
including TWIST ρ and δ

Phys. Rev. D 72, 073002 (2005)

TWIST measurements have already made a big impact on weak coupling limits.

eta result includes PSI e+ polarization (Danneberg et al, PRL 94, 021802 (2005)).
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LL| ≡ 0

Recent muon decay global analysis (90% C.L.),
including TWIST ρ and δ

Phys. Rev. D 72, 073002 (2005)

Global analysis also finds η = -0.0036 ± 0.0069,
due in part to TWIST ρ and δ.

(c.f. pre-TWIST η = -0.007 ± 0.013)

TWIST measurements have already made a big impact on weak coupling limits.

eta result includes PSI e+ polarization (Danneberg et al, PRL 94, 021802 (2005)).



Limits on Right-Handed 
Muon Decay
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Global Analysis gives Qµ
R < 0.007

Qµ
R =

1
4
|gS

LR|2 +
1
4
|gS

RR|2

+ |gV
LR|2 + |gV

RR|2 + 3|gT
LR|2

Qµ
R < 0.014Pre-TWIST:

QmuR: model-independent measure of right-handed muon decay probability.

Particular bilinear combination satisfies certain constraints and normalizations.



Limits on Left-Right 
Symmetric Models
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WL = W1 cos ζ + W2 sin ζ
WR = eiω(−W1 sin ζ + W2 cos ζ)

“Manifest” LRS General LRS

Example of applying TWIST results to a particular (popular) model.

Note the gR/gL in the right plot.  “Manifest” means (in part) gR=gL.

TWIST limits similar in both plots.



“Sometimes, if you pay real close attention to the pebbles 
you find out about the ocean.”

-Terry Pratchett

Extremely high-precision measurements

Systematics well understood

Significant (x2!) improvements in Weak limits

On course for order of magnitude improvement

The TWIST Experiment
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