TWIST – the TRIUMF Weak Interaction Symmetry Test

A precision study of the μ^+ decay spectrum

- *Designed to achieve ~ 0.01% in the *shape* of the μ decay spectrum
- Several data sets of 10⁹ events each
- ❖ A precision test of the weak interaction in the Standard Model

D.R.Gill TRIUMF drgill@triumf.ca

Outline

- Motivation
- Overview of the experiment
- Analysis status
- *Timeline

The TWIST Collaboration

Graduate Students

TRIUMF	Alberta	Kurchatov Institute
Ryan Bayes†	Andrei Gaponenko	Vladimir Selivanov
Yuri Davydov	Peter Kitching	Vladimir Torokhov
Jaap Doornbos	Rob MacDonald	
Wayne Faszer	Maher Quraan	Texas A&M
David Gill	Nathan Rodning 🖇	Carl Gagliardi
Peter Gumplinger	John Schaapman	Jim Musser
Robert Henderson	Glen Stinson	Robert Tribble
Jingliang Hu		Maxim Vasiliev
John A. Macdonald § Glen Marshall Dick Mischke†† Art Olin Robert Openshaw Tracy Porcelli‡ Jean-Michel Poutissou	British Columbia Blair Jamieson Mike Hasinoff Montreal Pierre Depommier	Valparaiso Don Koetke Paul Nord Shirvel Stanislaus
Renee Poutissou Grant Sheffer Bill Shin ‡ ‡	Regina Ted Mathie Roman Tacik	§ Deceased

TWIST Motivation – testing the Standard Model

... Most general interaction does not presuppose the W

rate
$$\sim \left| \sum_{\gamma=S,V,T} g_{ij}^{\gamma} \left\langle \overline{\psi}_{ei} \right| \Gamma^{\gamma} \left| \psi_{\nu_{e}} \right\rangle \left\langle \overline{\psi}_{\nu_{\mu}} \left| \Gamma_{\gamma} \right| \psi_{\mu j} \right\rangle \right|^{2}$$

$$i, j=R, L$$

- S, V, T =scalar, vector or tensor interactions
- R, L = right and left handed leptons (e, μ , or τ)

Expanded in terms what have become known as the Michel parameters

$$rate \sim x^{2} \left[3 - 3x + \frac{2}{3} \rho(4x - 3) + 3\eta x_{o} \frac{1 - x}{x} + P_{\mu} \xi \cos(\theta) \left(1 - x + \frac{2}{3} \delta(4x - 3) \right) \right]$$

These shape parameters of the spectrum are what TWIST is studying!

Modified by radiative corrections.

Now several calculations

to 2nd order exist

See Arbuzov JHEP0303:063,2003

{hep-ph/0206036}

The Michel Parameter - ρ

The parameter ρ largely determines the shape of the positron energy spectrum

$$\rho - \frac{3}{4} = \frac{3}{4} \left[-|g_{LR}^V|^2 - |g_{RL}^V|^2 - 2(|g_{LR}^T|^2 + |g_{RL}^T|^2) \right]$$

$$+ \frac{3}{4} \left[\text{Re}(g_{LR}^S g_{LR}^{T*}) + \text{Re}(g_{LR}^S g_{LR}^T) + \text{Re}(g_{RL}^S g_{RL}^T) + \text{Re}(g_{RL}^S g_{RL}^T) \right]$$

- → fewer required experiments
- -can conspire so $\rho = \frac{3}{4}$
- → measure parameters simultaneously

The effect of large deviations in ρ on the shape of the energy spectrum. The effect shown is roughly **500** times the TWIST sensitivity

Anticipated TWIST sensitivity to R-H currents in muon decay

$$Q_{R}^{\mu} = Q_{RR} + Q_{LR} = \frac{1}{4} |g_{LR}^{S}|^{2} + |g_{LR}^{V}|^{2} + 3|g_{LR}^{T}|^{2} + \frac{1}{4}|g_{RR}^{S}|^{2} + |g_{RR}^{V}|^{2}$$

$$Q_{R}^{\mu} = \frac{1}{2} \left(1 + \frac{1}{3} \xi - \frac{16}{9} \xi \delta \right)$$

$$0.752$$

$$0.748$$

$$0.748$$

$$0.746$$

$$0.746$$

$$0.993 \ 0.994 \ 0.995 \ 0.996 \ 0.997 \ 0.998 \ 0.999$$

$$1$$

$$\varepsilon$$
PDG
$$0.744$$

$$0.993 \ 0.994 \ 0.995 \ 0.996 \ 0.997 \ 0.998 \ 0.999$$

Left/Right Symmetric Extensions of the Standard Model

Two weak bosons with mass eigenstates M_1 and M_2

$$M_{W_L} = M_1 \cos(\zeta) - M_2 \sin(\zeta)$$

$$M_{W_R} = e^{i\omega} (M_1 \cos(\zeta) + M_2 \sin(\zeta))$$

Parity violation at low energy is presumably due to

$$\frac{m_{W_R}}{m_{W_L}} >> 1$$

In general, the models may include a CP violating phase (ω) , and a left/right mixing parameter ζ

For Left/Right Symmetric extensions

For
$$g_{LR}^V = g_{RL}^V \approx \zeta \ll 1$$
 $g_{RR}^V \approx \left(\frac{m_L}{m_R}\right)^2$

$$\rho \approx \frac{3}{4} \left(1 - 2\zeta^2 \right)$$

$$\xi \approx 1 - 2 \left(\frac{m_L}{m_R} \right)^4 - 2\zeta^2$$

$$\approx \frac{4}{3} \rho - 2 \left(\frac{m_L}{m_R} \right)^4$$

$$\delta \approx \frac{3}{4}$$

$$\eta \approx 0$$

ρ is sensitive to the Left/Right mixing

 ξ to the mixing and to the W_R mass

δ and η are unchanged by Left/Right extensions with manifest symmetry

A measurement of ρ and ξ determines the W_R mass and its mixing

Left/Right Mixing constraints – Anticipated TWIST Sensitivity

Complementary

$$\left(rac{g_R}{g_L}
ight)^4 \left(rac{V_{ud}^R}{V_{ud}^L}
ight)^2 \left(rac{M_L}{M_R}
ight)^4$$

p pbar collider
$$\left(\frac{g_R}{g_L} \right)^2 \left(\frac{V_{ud}^R}{V_{ud}^L} \right)^2 function \left(\frac{M_L}{M_R} \right)$$

$$\left| \frac{g_R}{g_L} \right|^4 \left| 1 + \left(\frac{V_{ud}^R}{V_{ud}} \right)^2 \left| \frac{M_L}{M_R} \right|^4 \right|$$

The Experiment

- Highly polarized muons enter the spectrometer one at a time
- Unbiased trigger on muon entering system
- ❖ Data sets of 10⁹ muon decay events in roughly two weeks (modern computing)
- ❖ The experiment is systematics limited. The high data rate is a must for systematics studies

The large acceptance makes possible measurements of Michel parameters under differing conditions — therefore improving the reliability of the result.

Chambers & half detector

Planar drift chambers sample positron track

Use 44 drift planes, and 12 PC planes

End Run 3993 Event 10, Window **Typical** decay event Top Right Z-U Bottom Right Z-V

Analysis Concept

Fit real data to Monte Carlo generated data

- many effects of reconstruction cancel
- •MC must reproduce the detector response well TWIST detector thin so effects small

Useful for systematics search/study

• systematics comparisons can be done directly fit data to data or MC to MC

Hide values of ρ , δ , ξ and η used in MC generation

- can be done in straightforward way
- avoids human bias in analysis of systematics

Technology WestGrid: 1000*3GHz

Spectrum is linear in ρ , η , ξ and $\xi\delta$ so fit

$$N_{i}(\lambda_{data}) = N_{i}(\lambda_{MC}) + \frac{\partial N_{i}}{\partial \lambda}(\lambda_{data} - \lambda_{MC})$$

where $\lambda_{data} - \lambda_{MC} = \Delta \lambda$ is the fit parameter

 N_i - number in momentum/angle bin i

Generate μ beam, track to stop, get e⁺ kinematics from box, track e⁺ through detector

Open Safe

Fit data to this spectrum Determine $\Delta \rho$, $\Delta \delta$, $\Delta \xi$ and $\Delta \eta$

Use in systematics studies

Fit uncorrelated samples
Detect & evaluate
systematic

Fit correlated samples Enhance & evaluate systematic

Systematics study status

Sample from correlated data to data fits

O 00111 010 11 0					
	10-3	ρ	δ	٤	η
Alignment	Translation	0.10	0.08	0.13	5.8
	Rotation	0.07	0.05	0.28	3.9
Chamber	HV	0.05	0.03	0.06	2.6
	Cell Geometry	0.28	0.21	0.36	16.
	Gas Density	0.15	0.11	0.20	8.5
Calibration	Trigger time	0.13	0.09	0.16	7.0

Long list at this level – No showstopper found

session J11 ρ – (Musser) δ – (Gaponenko)

Timeline

- ♦6x10⁹ muon decay events are in hand
 - **❖** complete **10**⁻³ analysis **this summer!**
 - *publish determination of ρ and δ
- ❖2004 data run
 - \diamond data on $P_{\mu}\xi$ at 10^{-3} (and η ?) this summer/fall
- at least 3 PhD's granted by 2005
- ❖Final parts in 10⁻⁴ data & publications: 2005/2006
- **❖**Need More Graduate Students Now

Summary

- ❖ The TWIST experiment is near end of phase 1
 - ❖ Anticipate preliminary measurements at ~0.1% of:
 - $\bullet \rho$ and δ (this summer)
 - $P_{\mu}\xi$ (Data during the summer/fall of 2004)
 - Final precision on ρ and δ and $P_{\mu}\xi$ at $\sim \pm 0.02\%$
 - *TWIST is exploring significant new space where evidence may be found to challenge the standard model
 - For left/right symmetric models, TWIST has a mass reach which is comparable to - and which complements β decay experiments and direct searches at the Tevatron