Energy Calibration for the TWIST Muon Decay Spectrum

Current Status and Future Directions

R. Bayes¹²
For the TWIST Collaboration rbayes@triumf.ca

¹Department of Physics University of Victoria

²TRIUMF

Winter Nuclear and Particle Physics Conferece, February 19, 2006

Introduction

- Brief description of TWIST
- \bullet Analysis strategy in \mathcal{TWIST} : Role of energy calibration
- Measurement of energy calibration
- Issues and improvements

Brisf Description of TWIST

- Triumf Weak Interaction Symmetry Test
- High precision test of the Standard model weak interaction using muon decay
- Objective is to measure the Michel parameters ρ , δ , and $P_{\mu}\xi$ to unprecedented precision

TWIST Energy Calibration

Analysis Strategy in TWIST

Analysis Strategy in TWIST

TWIST Parameter Fitting

- Comparisons of data and Monte Carlo without energy calibration produces a change in the Michel parameters on the order of 10⁻⁴
- Makes calibration of the energy scale imperative

TWIST Parameter Fitting

- Comparisons of data and Monte Carlo without energy calibration produces a change in the Michel parameters on the order of 10⁻⁴
- Makes calibration of the energy scale imperative.

Energy Calibration

We anticipate a correction to momentum of the form

$$p^{rec} = \left(1 + rac{eta}{p_0}
ight) \left(p^{true} - rac{lpha}{|\cos heta|}
ight).$$

- β represents a correction to the energy scaling
- ullet α represents the energy loss
- p₀ is the endpoint of the Michel Spectrum
- The energy calibration can only be completed at the endpoint of the spectrum

Simple model of the Michel spectrum endpoint was devised

Convolution of a
Gaussian and a sloped
step function

Slope is dependant on momentum and angle

$$y = a_0 + a_1 \cos \theta + (b_0 + b_1 \cos \theta)p$$

Simple model of the Michel spectrum endpoint was devised

 Convolution of a Gaussian and a sloped step function

Slope is dependant on momentum and angle

$$y = a_0 + a_1 \cos \theta + (b_0 + b_1 \cos \theta)p$$

Simple model of the Michel spectrum endpoint was devised

 Convolution of a Gaussian and a sloped step function

Slope is dependant on momentum and angle

$$y = a_0 + a_1 \cos \theta + (b_0 + b_1 \cos \theta)p$$

Simple model of the Michel spectrum endpoint was devised

 Convolution of a Gaussian and a sloped step function

Slope is dependant on momentum and angle

$$y = a_0 + a_1 \cos \theta + (b_0 + b_1 \cos \theta)p$$

Room For Improvement

Current, accepted, energy calibration has a few problems

- Large correlations between fitting parameters
 - main example is a large correlation between $\alpha_{up} + \alpha_{down}$ and
- Model of the endpoint allows for a dependence on the Michel parameters.
- Method is statistics intensive; requires a full data set

Fitting correlations

- Problem can possibly corrected by adjusting the parameters to limit the lever arm.
- Some concern has been raised over the physical applicability of this method
- Current alternative is to fix the value of β

Michel Parameters and Energy Calibration

- Model of the endpoint measure the slope of the spectrum with respect to the momentum and angle of the positron.
- This is an implicit dependence of the energy calibration on the Michel parameters.
- Has been measured by checking the energy calibration of raw Monte Carlo + derivatives
 - test has produced changes of 4% in β , 0.5% in α
 - resulting change in Michel parameters after applying calibration is on the order of 10⁻⁵

- Energy calibration has been an integral part of the TWIST analysis to date
- Issues exist within the energy calibration used in the analysis to date
- Correlation between α_{sum} and β seems to be the most significant (currently represents a large systematic effect)
- Relationship between edge parameters and Michel parameters seems to be small but should be checked on a fit by fit basis.
- Improvements pending

- Energy calibration has been an integral part of the TWTST analysis to date
- Issues exist within the energy calibration used in the analysis to date
- Correlation between α_{sum} and β seems to be the most significant (currently represents a large systematic effect)
- Relationship between edge parameters and Michel parameters seems to be small but should be checked on a fit by fit basis.
- Improvements pending.

- Energy calibration has been an integral part of the TWIST analysis to date
- Issues exist within the energy calibration used in the analysis to date
- Correlation between $\alpha_{\it sum}$ and β seems to be the most significant (currently represents a large systematic effect)
- Relationship between edge parameters and Michel parameters seems to be small but should be checked on a fit by fit basis.
- Improvements pending.

- Energy calibration has been an integral part of the TWIST analysis to date
- Issues exist within the energy calibration used in the analysis to date
- Correlation between $\alpha_{\textit{sum}}$ and β seems to be the most significant (currently represents a large systematic effect)
- Relationship between edge parameters and Michel parameters seems to be small but should be checked on a fit by fit basis.
- Improvements pending.

- Energy calibration has been an integral part of the TWIST analysis to date
- Issues exist within the energy calibration used in the analysis to date
- Correlation between $\alpha_{\textit{sum}}$ and β seems to be the most significant (currently represents a large systematic effect)
- Relationship between edge parameters and Michel parameters seems to be small but should be checked on a fit by fit basis.
- Improvements pending.

