TWIST

The TRIUMF Weak Interaction Symmetry Test

Goal: A high precision measurement of the positron (T_e) and $(\cos \Box_e)$ spectrum from \Box -decay to test the SM predictions for the weak interaction

Outline

- Physics motivation
- Discovery potential for *TWIST*
- Experimental method
- Analysis approach
- Systematics studies
- Timeline

The TWIST Collaboration

Graduate Students

RIUMF	Alberta	Kurchatov Institute	
Ryan Bayes†	Andrei Gaponenko	Vladimir Selivanov	
Yuri Davydov	Peter Kitching	Vladimir Torokhov	
Jaap Doornbos	Rob MacDonald		
Wayne Faszer	Maher Quraan	Texas A&M	
David Gill	Nathan Rodning 🖇	Carl Gagliardi	
Peter Gumplinger	John Schaapman	Jim Musser	
Robert Henderson	Glen Stinson	Robert Tribble	
Jingliang Hu		Maxim Vasiliev	
John A. Macdonald 🖇	British Columbia		
Glen Marshall	Blair Jamieson	Valparaiso	
Dick Mischke††	Mike Hasinoff	Don Koetke	
Art Olin	Willie Hussilvii	Paul Nord	
Robert Openshaw	Mandana	Shirvel Stanislaus	
Tracy Porcelli‡	Montreal		
Jean-Michel Poutissou	Pierre Depommier		
Renee Poutissou			
Grant Sheffer	Regina	0.0	
Bill Shin ‡ ‡	Ted Mathie	§ Deceased	
	Roman Tacik		

TWIST physics motivation --test the Standard Model for []-decay

... Most general interaction does not presuppose the W

$$e^{\pm}$$

$$\uparrow$$

$$rate \sim \left| \prod_{\substack{j=S,V,T\\i,j=R,L}} g_{ij}^{\square} \left\langle \prod_{e_i} \prod_{j=e}^{\square} \left\langle \prod_{l=e}^{\square} \left\langle \prod_{l=e}^{\square}$$

- S, V, T =scalar, vector or tensor interactions
- R, L = right and left handed leptons (e, [], or [])

Couplings in the present Standard Model

$$\begin{vmatrix} g_{RR}^{S} | = 0 & |g_{RR}^{V}| = 0 & |g_{RR}^{T}| = 0 \\ |g_{LR}^{S}| = 0 & |g_{LR}^{V}| = 0 & |g_{LR}^{T}| = 0 \\ |g_{RL}^{S}| = 0 & |g_{RL}^{V}| = 0 & |g_{RL}^{T}| = 0 \\ |g_{LL}^{S}| = 0 & |g_{LL}^{V}| = 1 & |g_{LL}^{T}| = 0 \end{aligned}$$

Current measured couplings ---

$$rate \sim \left| \begin{array}{c} \Box \\ \Box = S, V, T \\ i, j = R, L \end{array} \right| g_{ij}^{\square} \left\langle \Box e_i \middle| \Box^{\square} \Box_{e_i} \right\rangle \left\langle \Box \Box_{\square} \middle| \Box_{\square} \Box_{\square} \right\rangle \right|^{2}$$

$$\begin{vmatrix} g_{RR}^{S} | < 0.066 & |g_{RR}^{V}| < 0.033 & |g_{RR}^{T}| \equiv 0 \\ |g_{LR}^{S}| < 0.125 & |g_{LR}^{V}| < 0.060 & |g_{LR}^{T}| < 0.036 \\ |g_{RL}^{S}| < 0.424 & |g_{RL}^{V}| < 0.110 & |g_{RL}^{T}| < 0.122 \\ |g_{LL}^{S}| < 0.55 & |g_{LL}^{V}| > 0.96 & |g_{LL}^{T}| \equiv 0 \end{vmatrix}$$

e^+ spectrum in x, $\cos \square_e$

$$rate \sim x^2 \left[3 \square 3x + \frac{2}{3} \square (4x \square 3) + 3 \square x_o \right] \left[\frac{1}{x} \square x \right] + P_{\square} \square \cos \square_e \left[\frac{1}{3} \square x + \frac{2}{3} \square (4x \square 3) \right] \left[\frac{1}{x} \square x \right] \right]$$

Spectral shape in x, $\cos \square$ is characterized in terms of four parameters -- \square , \square , \square

 P_{\square} is the muon polarization

$$x_O \equiv \frac{m_e}{E_e^{\text{max}}}$$

$$E_e^{\text{max}} = \frac{m_{\square}^2 + m_e^2}{2m_{\square}}$$

(L. Michel, A. Sirlin)

e^+ spectrum in x, $\cos \square_e$

$$rate \sim x^2 \left[\frac{1}{3} \left[3x + \frac{2}{3} \left[(4x \left[3) + 3 \left[x_o \right] \right] + P_o \left[\cos \left[c \right] \right] \right] + \frac{2}{3} \left[(4x \left[3) + 3 \left[x_o \right] \right] \right] \right] + \frac{2}{3} \left[(4x \left[3) + 3 \left[x_o \right] \right] \right] + \frac{2}{3} \left[(4x \left[3) + 3 \left[x_o \right] \right] \right] \right]$$

TWIST --

• will measure the e⁺ spectral shape to very high precision

• will extract [], [], [] to a few parts in 10^4

• [] is being measured at PSI

Current status --

	<u>SM</u>	PDG	
Ц	3/4	$= 0.7518 \pm 0.0026$	1969
	3/4	$= 0.7486 \pm 0.0026 \pm 0.0028$	1988
	1.0	$= 1.0027 \pm 0.0026$	1987
	0.0	$= [0.007 \pm 0.013]$	1985
$P_{\Box} = \prod_{i=1}^{n}$	1.0	> 0.99682, $CL = 90%$	1986
\Box \Box			

TWIST will measure [], [] in two steps -- 10^{-3} in 2004; $\sim 3 \times 10^{-4}$ in 2005/6

Spectral effects with changes in [], [], []

~500 times TWIST sensitivity

0.8

Search for deviations from SM ---

$$\Box = \frac{3}{4} ||S_{LL}||^{2} + |g_{RR}^{V}|^{2} + |g_{LR}^{T}|^{2} + |g_{RL}^{T}|^{2} ||E|| \\
+ \frac{3}{16} ||S_{LL}||^{2} + |g_{RR}^{S}|^{2} + |g_{LR}^{S}|^{2} + |g_{RL}^{S}|^{2} ||E|| \\
- \Box \frac{3}{4} \left[\text{Re} \left(g_{LR}^{S} g_{LR}^{T*} \right) + \text{Re} \left(g_{RL}^{S} g_{RL}^{T*} \right) \right]$$

$$\Box = \frac{3}{4} \quad \text{with} \quad g_{LL}^{V} = 1 \text{ and all other couplings} = 0$$

$$\square \neq \frac{3}{4}$$
 implies non-standard model couplings

Search for deviations from SM ---

$$\Box 1 = \Box \frac{1}{2} \Box g_{RR}^{S} \Big|^{2} + \left| g_{LR}^{S} \right|^{2} \Box 2 \Box g_{RR}^{V} \Big|^{2} + 2\left| g_{RL}^{V} \right|^{2} \Box \left| g_{LR}^{V} \right|^{2} \Box \left| g_{RL}^{T} \right|^{2} \Box \left| g_{RL}^{T} \right|^{2} \Box \left| g_{LR}^{T} \right|^{2} \Box \left|$$

$$\Box \Box \frac{3}{4} = \Box \frac{3}{4} \left\| g_{RR}^{S} \right|^{2} + \left| g_{LR}^{S} \right|^{2} + 2 \left| g_{RR}^{V} \right|^{2} + \left| g_{RL}^{V} \right|^{2} + \left| g_{LR}^{V} \right|^{2} \right|$$

$$+ 2 \left\| g_{RL}^{T} \right|^{2} + 2 \left| g_{LR}^{T} \right|^{2} \left\| \right|$$

$$\Box \operatorname{Re} \left[\left(g_{RL}^{S*} g_{RL}^{T} \right) + \left(g_{RL}^{S} g_{RL}^{T*} \right) \Box \left(g_{LR}^{S*} g_{LR}^{T*} \right) \Box \left(g_{LR}^{S} g_{LR}^{T*} \right) \right]$$

... and also for []

Chirality of the muon decay...

$$rate \sim \begin{array}{c} Q_{mn} \\ m=R,L \\ n=R,L \end{array}$$

 Q_{mn} describes decay of n-handed p-handed p-

$$Q_{LL} = \frac{1}{4} |g_{LL}^S|^2 + |g_{LL}^V|^2$$

$$Q_{LR} = \frac{1}{4} |g_{LR}^S|^2 + |g_{LR}^V|^2 + 3|g_{LR}^T|^2$$

$$Q_{RL} = \frac{1}{4} |g_{RL}^S|^2 + |g_{RL}^V|^2 + 3|g_{RL}^T|^2$$

$$Q_{RR} = \frac{1}{4} |g_{RR}^S|^2 + |g_{RR}^V|^2$$

Coupling to right-handed muons...

 Q_{mR} describes decay of a *right-handed* [] into a *right-handed* or *left-handed* e^+

$$Q_{mR} = 0$$
 by SM

$$Q_{mR} = Q_{RR} + Q_{LR} = \frac{1}{4} \left| g_{RR}^{S} \right|^{2} + \left| g_{RR}^{V} \right|^{2} + \frac{1}{4} \left| g_{LR}^{S} \right|^{2} + \left| g_{LR}^{V} \right|^{2} + 3 \left| g_{LR}^{T} \right|^{2}$$

$$Q_{mR} = \frac{1}{2} \left[1 + \frac{1}{3} \right] \left[\frac{16}{9} \right]$$

A determination of \square and \square gives a model-independent test for the existence of right-handed couplings to muons, i.e., $Q_{mR} \neq 0$

Anticipated *TWIST* sensitivity to right-handed currents in muon decay

Left/Right Symmetric Model

Two weak bosons with mass eigenstates M_1 and M_2

$$M_{W_L} = M_1 \cos \square \square M_2 \sin \square$$
 $M_{W_{SM}} \square M_{W_L}$ $M_{W_R} = e^{i\square} (M_1 \sin \square + M_2 \cos \square)$ $\square = \frac{M_1^2}{M_2^2} << 1$ \square Left/Right mixing angle;

$$M_{W_{SM}} \square M_{W_L}$$

$$\square = \frac{M_1^2}{M_2^2} << 1$$

$$\Box = \sqrt{\frac{1}{2} \Box \frac{2}{3} \Box} \qquad \Box = \sqrt{\frac{2}{3} \Box \Box \frac{1}{2} \Box}$$

Left/Right Mixing constraints – Anticipated *TWIST* Sensitivity

The TWIST program:

- Collect *high precision data* to obtain the e^+ spectrum from \square -decay as a function of x and $cos \square_e$
- Detailed *study of systematic* errors in *TWIST*
- Obtain a precision in \square , \square (a) of 10^{-3} and (b) a few parts in 10^4 (~ 10^{-3} precision for \square)
- Compare [], [], [] from our fit with Standard Model values

Obtain *high precision data* on the e^+ spectrum

Chambers & half detector

Planar drift chambers sample positron track

Use 44 drift planes, and 12 PC planes

TWIST Data

- High data rates (few kHz) \square Data sets of 10^9 muon decay events in $\sim two weeks$
- *TWIST* is *systematics* limited. (High data rates and computational resources are essential for studying systematic effects.)
- In 2002-03, $\sim 6 \times 10^9$ muon decay events on tape.

• Standard data set ~ 300M triggers > ~58M useful events (smaller samples for some systematics studies)

Reconstructed muon decay spectrum

Determination of [], [], []

Accelerator data Monte Carlo data are generated are collected **Event Analysis** Event classification (31 types) • Helix fit to events within fiducial volume • Extract *e*⁺ momentum and angle *spectrum* in bins of x and $cos \square_{e}$ Monte Carlo Accelerator Fit data spectrum data spectrum

Determination of [], [], []

Data spectrum is fit to Monte Carlo spectrum ---

From the fit $\square \square$, $\square \square$, $\square \square$, are determined.

Blind Analysis: \square_o , \square_o , \square_o , \square_o are generated randomly (*once*) and remain *hidden* until the end of the experiment.

Monte Carlo data Monte Carlo data are generated are generated **Event Event Analysis** • Event classification • Event classification (31 types) • Helix fit to events w • Helix fit to events within fiducial volume • Extract e⁺ momentu • Extract e⁺ momentum and angle spectrum in bins of x and cos in bins of x and cosMonte Carlo Monte Carlo Fit data spectrum data *spectrum*

Evaluating Systematic Errors *Methodology:*

- Exaggerate possible sources of systematic error -
 - Take accelerator data sets under a different conditions
 - Generate Monte Carlo runs with different settings
 - Analyze same data with different calibrations
 (Use full (or nearly full) data set for each test)
- Scale the effect by the exaggeration factor

Examples

- Chamber gas density: muon stopping distribution
- Different magnetic field: energy calibration
- Magnetic field shape
- Alignments
- Beam properties
- Detector response:
 - STR: HV, drift cell geometry
 - Efficiency, fiducial region
 - Resolution
 - Cross talk
- TWIST simulation (GEANT) ...and more...

Present Status

	10-3				
Alignment	Translation	0.10	0.08	0.13	5,5
	Rotation	0.07	0.05	7.2	3.9
Chamber	HV	U 75	0.3	0.06	2.6
	Cell Geometry	25	0.21	0.36	16.
	Ga Lens 'y	0.15	0.11	0.20	8.5
Calibration	Trigger time	0.13	0.09	0.16	7.0

... and many more at this level...

No show-stoppers!

- Test the simulation independently of [], [], []
 - Take accelerator data sets under a different conditions
 - Generate Monte Carlo data sets with same conditions
 - Analyze data sets with the same analysis package
 - Compare the differences ---

• Determine the sensitivity for each physics/detector effect in [], [], []

Examples

- Chamber gas density: muon stopping distribution
- Different magnetic field: energy calibration
- p_{max} vs \square_e
- \square^2 and confidence level distributions
- hits per plane
- muon stopping distribution
- delta production cross-section
- energy loss
- multiple scattering
- ...and more...

Compute power - WestGrid

- At University of British Columbia
- 504 dual-3Ghz Xeon nodes
- 10 TB global disk storage
- Robot tape archiving system
- Many tens of 10⁸ events analyzed
- Many tens of 10⁸ events simulated & analyzed
 - ~ 70 ms/event (simulation)
 - − ~30 ms/event (reconstruction)
 - >5000 CPU days used
- (www.westgrid.ca)

Funded by the Canada Foundation for Innovation, Alberta Innovation and Science, BC Advanced Education, and the participating research institutions.

The TWIST timeline:

· 2004

- Data in hand for measurement of \Box , \Box to 10^{-3}
- Study of systematic errors (for 10-3) *nearly complete*
- Publish measurement of \bigcap , \bigcap at 10^{-3} in 2004.
- Take data for measurement of P_{\square} for precison of 10^{-3} publish 2004/05

• 2005/06

• Take data for measurement of \square , \square , \square to a precision of a *few parts in* 10^4 (~ 10^{-3} *precision for* \square)

BOTTOM LINE: Compare [], [], [] from our fit with Standard Model values [] *New Physics?*