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ABSTRACT

The search for lepton flavour violation is significant to our understanding of the

standard model of particle physics. This measurement uses the muon decay data col-

lected by the TWIST experiment at TRIUMF to search for lepton flavour violation

between charged lepton species. Specifically, I searched for the decay µ+ → e+X0,

where X0 is an unknown, undetected, neutral boson, against a background of stan-

dard muon decays, µ+ → e+νeν̄µ. I set branching ratios for these decays such that

B(µ+ → e+X0)< 2 × 10−5 − 5 × 10−5, for X0 of various masses accessable by the

momenta of the muon decay spectrum, to a confidence level of 95%. This improves

upon the previous best limits by a factor of three. A correction to the spectrum was

required to set a limit on a massless X0 of B(µ+ → e+X0)< 6.3 × 10−5.
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Chapter 1

Introduction

The violation of family symmetries between leptons, also known as lepton flavour

violation (LFV), has experienced a revival of interest in recent years due to the

discovery of neutrino oscillations. These oscillations amount to a violation of lepton

flavour between the neutral lepton species. A standing question within particle

physics is whether there is a similar violation of lepton flavour between charged

leptons. Here I will describe a search for exotic, lepton flavour violating, decays

within the muon decay spectrum measured by the TWIST experiment.

TWIST, the TRIUMF Weak Interaction Symmetry Test, studies the shape of the

spectrum from the muon decay µ+ → νeν̄µe
+, with the goal of testing the weak in-

teraction to an unprecedented level of accuracy. This goal requires both a significant

sample of muon decays, and a high precision apparatus to measure the momentum

and angle of the positron produced by the decay. By virtue of this large statisti-

cal sample, we can search for LFV in muon decay at a level well below the current

experimental limits.

The simplest observable case of this LFV is the case of a muon decaying into

an electron (or positron) and a second, unknown, neutral particle. Thus far, such

a decay has not been observed. However, the lack of observation of LFV decays in

large samples of muon decays allows us to set upper limits on the probability of such

decays occurring. TWIST provides an excellent sample of muon decays for such a

search.

Many searches for LFV decays have been done to date, and there are many
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currently under way. The current best limits to a 90% confidence level as recorded

in [1] for the branching ratios of possible muonic LFV decays are,

Γ(µ+ → e+γ)

Γ(µ+ → e+νeν̄µ)
< 1.2 × 10−11

as obtained by the MEGA collaboration

Γ(µ+ → e+X0, X0 → e+e−)

Γ(µ+ → e+νeν̄µ)
< 1.0 × 10−10

as obtained by the SINDRUM collaboration [2]

Γ(µ+ → e+X0)

Γ(µ+ → e+νeν̄µ)
< 3 × 10−4 reported by Bryman and Clifford [3]

(1.1)

TWIST is not equipped to measure µ → eγ competitively as it cannot measure the

outgoing photon. For this reason I will be focusing on the decay µ+ → e+X0 where

X0 is an unknown boson which cannot be directly observed. Of the two branching

ratios of this type of decay which are shown here, the result given by Bryman and

Clifford in [3] is the most comparable to the measurement that I will be describing

here. The SINDRUM result looked specifically for the prompt decay of the unknown

boson into an electron positron pair. This makes the SINDRUM measurement a

complementary measurement to those reviewed by Bryman, and the measurement

that I will be describing in this thesis. Bryman’s measurement, although the one

most commonly quoted to set the limits on the presence of two body decays involving

a massive boson in muon decay, was superceded by a later analysis of the his data.

Balke [4] reported a branching ratio that improved on the Bryman result by “more

than a factor of 2 . . . across most of the spectrum”. As a consequence I shall be

considering both of these measurements in direct comparison to the measurement

that I will be describing in this thesis.
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Theory

Within the standard model of particle physics the leptons are grouped into three

generations, or families. The charged members of these families, the electron, muon,

tau, and their anti-particles, do not change their flavours during interactions due to

the vanishingly small masses of their neutrino partners [5]. However, the discovery of

neutrino oscillations has provided conclusive evidence that neutrinos do have mass

and, subsequently, renewed theoretical interest in the prospect of lepton flavour vio-

lation among charged species [6]. A primary target for this interest is in the simplest

possible of LFV processes; that is µ → eγ. Alternate two body decay modes involv-

ing other flavour mediating particles such as familons, and even particles mediating

the quintessence field have also been proposed as the mechanism for LFV processes

and all of these require a global analysis of possible decays such as that which I am

pursuing here.

2.1 Three Body Muon Decay

Before continuing with a discussion of LFV mechanisms within muon decay, it is

important to discuss standard muon decay, via the three body decay µ+ → e+ν̄µνe,

as it is measured by TWIST. This charge changing interaction can be most generally

described using the matrix element

M = 4
GF√

2

∑

γ=S,V,T
ε,µ=R,L

gγ
ε,µ〈eε|Γγ|(νε)n〉〈(νµ)m|Γγ|µµ〉. (2.1)

3
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Figure 2.1: A Monte Carlo simulation of the Michel muon decay distribution

Here, the index γ labels the interaction as a 4-vector (V), 4-scalar (S), or 4-tensor (T)

interaction, while the indices ε and µ denote the chirality of the leptons involved in

the interaction. I have also used GF to represent the Fermi Coupling constant while

gγ
ε,µ represents the coupling between a µ handed muon and a ε handed positron via

the interaction Γγ. The chirality of the neutrinos, n and m are uniquely determined

from µ, ε, and γ. According to the standard model of electroweak interactions, the

only interaction allowed is the left handed, vector coupling (gγ
ε,µ ≡ 1). All other

possible couplings are zero in the standard model [7]. A simulation of the Michel

spectrum appears in Fig. 2.1.

The differential decay distribution resulting from this interaction is generally

represented in terms of the energy and angle of the outgoing positron.

∂2Γ

∂x∂ cos θ
=

mµ

4π3
W 4

eµG
2
F

√

x2 − x2
0 (FIS(x) + Pµ cos θFAS(x)) (2.2)

where the positron polarisation has been integrated out of the equation and radiative

corrections have been neglected. Here I have used Weµ = (m2
µ+m2

e)/2mµ to represent

the maximum energy attainable by the positron, the reduced energy of the positron

x = Ee/Weµ, the reduced mass of the positron x0 = me/WEµ, and the degree of

muon polarisation within the measured sample Pµ [8].
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If I expand the isotropic and anisotropic parts of the spectrum (FIS and FAS

respectively) into functions of the reduced energy,

FIS = x(1 − x) +
2

9
ρ(4x2 − 3x − x2

0) + ηx0(1 − x)

FAS =
1

3
ξ
√

x2 − x2
0

[

1 − x +
2

3
δ
(

4x − 3 +
(√

1 − x0 − 1
))

]

. (2.3)

Here the masses of the neutrinos have been neglected as have higher order corrections

(although they are included in the simulation). The parameters, ρ, η, δ, and ξ,

are referred to as the Michel parameters. Throughout the remainder of this thesis

the decay spectrum corresponding to equations 2.2 and 2.3 will be referred to as

the Michel spectrum. The measurement of the Michel parameters act as a very

sensitive test of the standard model. Any deviations of the Michel parameters from

the standard model values of ρ = δ = 0.75, ξ = 1, or η = 0 will imply the existence

of physics outside of the standard model [9].

2.2 Two Body Decays

2.2.1 Possible Models

There are a number of proposed mechanisms for the decay of a muon into a positron

with an unknown, neutral particle. The common thread within these candidate

fields is that their interactions with matter involve derivative couplings. However,

the physical motivations for these models are very different.

The first of these candidate particles is the axion. Axions are Nambu-Goldstone

bosons resulting from the non-zero vacuum energy of the gauge field that maintains

the CP symmetry within strong nuclear interactions [10]. Such a boson would behave

as a U(1)A gauge field (a field mediating axial rotations) with an effective Lagrangian

[11]

Leff =
1

Fµe

µ̄γρe∂ρX
0
µe, (2.4)

where Fµe is the energy scale on which the lepton flavour symmetry is broken. We

can use the branching ratio of the µ → e+X0 to infer this energy scale,

Γ(µ+ → e+X0)

Γ(µ+ → e+ν̄µνe)
=

2.5 × 1014GeV 2

F 2
µe

. (2.5)
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This scale should be observable if Fµe . 1012 GeV. The value of Fµe is currently

constrained to be greater than 9.9×109 GeV due to previously defined upper limits

[12]. Improvements on this measurement will drive this lower limit higher.

Another physically interesting example cites the dynamical component of the

dark energy field Q, also known as the quintessence, as a possible source of LFV

decays [13]. One of the consequences of the quintessence interacting with normal

matter is that it will create a time dependant variation in the physical constants.

Such a variation can be suppressed by introducing a global shift symmetry into the

quintessence field, Q → Q + C [14]. This forces the Q field to behave like a pseudo-

Goldstone boson and the interaction of the Q field to involve derivative couplings.

The resulting effective Lagrangian is again very similar to the axion interaction,

Leff =
1

Λ
∂µQ(cR

µef̄eRγµfµR + cL
µef̄eLγµfµL) (2.6)

where Λ represents the cutoff energy scale for the interaction. Λ can be constrained

using the current limits on the decay B(µ → eQ). If the coupling constants are

unitary, that is cR
eµ = cL

eµ = 1, then one can produce a branching ratio

Γ(µ+ → e+Q)

Γ(µ+ → e+ν̄µνe)
=

3π2

Λ2

1

(mµGF )2
. (2.7)

The current limits on the branching ratio give us a lower limit for the cutoff energy

scale of Λ & 4 × 109 GeV.

A similar effective Lagrangian occurs in the more general case of other massless

spin one gauge bosons other than the photon [15]. If one argues that there is a

symmetry for which all standard model fields are singlets a consequence of the inter-

action of such a field with matter is a derivative coupling. This implies that a singlet

gauge field will, in general, produce a coupling that will violate the conservation of

Lepton flavour. In this light it is apparent that a general two body search for LFV

decays is significant in the search for new physics.

2.2.2 Signal of Two Body Decays

In spite of the wide range of available models which may predict two body decays,

the signal indicating their presence is very simple, clean and model independent.

The signal resulting from the presence of a two body decay is dictated kinematically
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by the mass of the unknown neutral boson emitted from the decay and the spin

properties of the boson. Using the conservation of four momentum we know that

we will be able to see a resonance peak for a given boson mass, mX , at a positron

momentum

pe =

√

(

m2
µ + m2

e − m2
X

2mµ

)2

− m2
e. (2.8)

An important feature of this equation is that the signal generated by the decay of

the muon into a massless (or nearly massless) boson is a peak at the endpoint of the

Michel spectrum. This will become important later in the analysis.

If gauge invariance holds for a given field, then the associated gauge bosons should

be massless. The masses of the W± and the Z bosons are due to the spontaneous

symmetry breaking introduced by the Higgs mechanism. Thus we should expect that

the candidate bosons mediating LFV decays should be massless, if their associated

symmetries are unbroken. In the case of the axion this is believed to be correct.

Similarly, data obtained from the WMAP satellite constrains the mass of Q to be

less than 10−33eV . Jodidio et. al. [12] set a 90% upper limit on the branching ratio

for a massless boson at

Γ(µ+ → e+X0)

Γ(µ+ → e+νeν̄µ)
< 2.6 × 10−6. (2.9)

The data used by Jodidio to produce this result is more sensitive to the endpoint

region compared with the data presented here.

The width of this peak is dictated by the life time of the neutral daughter particle.

For example, I will consider the width of the resonance if this daughter particle decays

while it is inside the detector. If one considers a detector with dimensions on the

order of meters then one can reasonably expect such a decay to take place within

10−8 seconds after the initial muon decay if it is to take place before the relativistic

boson escapes the detector. The width, Γ, produced by such a decay would be

Γ ∼ }

τ
∼ 6.6 × 10−16eV (2.10)

which is much smaller than any resolution that we can reasonably expect for our

detector. On the other hand, given that the resolution (standard deviation) of the

response is roughly between 50 keV/c and 70 keV/c, I can set an upper limit on the
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Figure 2.2: A possible signal for a two body decay as it may appear within the

TWIST spectrometer. The histogram on the left shows the expected momentum

projection of a signal while the histogram on the right shows the projection of the

signal in cos θ. Note that tracks with |cosθ| < 0.2 are not reconstructed by the

TWIST spectrometer.

lifetime of a particle resonance dominated by the detector response;

τ &
}

Γ
∼ 9 × 10−21s. (2.11)

This is smaller than the typical timescale for a weak interaction. The resolution scale

of the TWIST detector is much larger than the resonance width for a wide range of

decay lifetimes. This motivates the use of the detector response to model the shape

of the peak. Such a peak may look like Fig. 2.2. This peak is shown superimposed

on the Michel spectrum in Fig. 2.3.

Finally I should point out that there is no inherent angular dependence to the

signal as it has been described so far. Any angular dependence that may appear will

be due to spin interactions. The most general representation of such an anisotropic

behaviour is

A = 1 + P cos θ (2.12)

where P represents the degree of anisotropy of the distribution. This anisotropy can
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Figure 2.3: The peak shown in Fig. 2.2 added to a standard Monte Carlo simulation

of the Michel distribution. This signal has a measurable branching ratio of 1.4×10−4.

Note that tracks with |cosθ| < 0.2 are not reconstructed by the TWIST spectrometer.

come from any number of model dependant effects. For example, if some kind of

parity violation occurs in the interaction, then one might see some kind of anisotropic

signal. In this case we would expect that P will take on a value related to the total

angular momenta of the muon and positron as well as the spin of the boson. Again

one would expect the resolution characteristics to dominate the resolution width in

momentum producing a signal such as that shown in Fig. 2.4. As TWIST does not

measure the polarisation of the positron, there is too little information to make such

an observation and draw any conclusions from them. Thus, while it is interesting to

set a limit on the branching ratio for an anisotropic two body decay, I can say very

little about what such a result means.
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Figure 2.4: Projections in momentum and cos θ of a possible signal for a two body

muon decay showing positive anisotropy, as the signal will appear in the TWIST

detector



Chapter 3

Experimental Setup

Here I give a brief description of the TWIST apparatus. The goal of TWIST is to

measure the Michel parameters to an ultimate precision of parts in 104. To achieve

the precision goals of TWIST, a precision apparatus is required. There are a number

of examples where this precision has a direct impact on the experiment. Measuring

the anisotropic parameters requires a highly polarised muon beam to achieve the

precision goals. Thus the M13 beam-line is designed to transport muons, which

have an initial helicity approaching -1, with very little depolarisation. The TWIST

spectrometer is similarly designed with these goals of precision in mind. Many of

these features highly beneficial to a search for unknown, exotic muon decays. I shall

focus on the features of the experimental apparatus that are the most important for

this measurement. A more detailed description of the TWIST spectrometer appears

in [16].

3.1 Muon Generation and Transport

The M13 beam line transports highly polarised muons from a production target

into the TWIST spectrometer. The muons are generated in a graphite or beryllium

production target in the TRIUMF proton beam line 1A. As the high energy protons

hit the target, they generate pions that quickly decay into muons. The pions that

decay on the surface of the target then enter the beam line at 100% negative helicity

due to the maximal parity violation of the decay π+ → µ+νµ, within the standard

11
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Figure 3.1: A schematic of the M13 secondary beam line

model. This decay generates mono energetic muons at 29.6 MeV/c. The Beam line

is tuned specifically to carry muons at this momenta. Pions that do not decay on

the surface of the production target tend to scatter, increasing the average helicity of

the muons and causing them to lose a significant fraction of their momentum. These

muons are generally removed by the momentum selection of the muon channel. Some

pions escape the production target to decay within the channel. These muons, also

known as cloud muons, provide a source of contamination for a muon beam with

a helicity of -1, that can be easily removed from the data set by making a cut

on the time between the time when the pions are created and the arrival of the

muons in the detector. A source of the beam contamination that is not so easily

removed come in the form of positrons resulting from the decay of muons during

beam transport. Beam positrons can quite potentially yield a false signal for an

exotic decay search. However, steps are taken during the analysis of the data to

remove this contamination, making beam positrons an issue to be aware of, but not

one of great concern for this analysis.

The beam line is depicted in Fig. 3.1. It consists of two bending magnets inter-

spersed with a number of slits and jaws required for the selection of momenta, and

three sets of quadrupoles to focus the beam at a spot within the magnetic field of

the detector. This ensures that the initial helicity of the muons is maintained.

Although a highly polarised beam is not as important for an exotic decay search

as for the measurement of the Michel parameters, it does provide the benefit of

improving one’s ability to resolve a decay. If the decay is isotropic, then the decay

should be quite more easily resolved in the downstream end of the TWIST detector
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than the upstream end due to the high negative polarisation. Similarly, if there is

some positive anisotropy to the signal, we should have an even better resolution of

the signal. Evidence of this effect will show as a decrease in the error of a signal with

positive or zero anisotropy when compared to a signal with negative anisotropy. I

will address this point in more detail in Appendix A.

3.2 The TWIST Spectrometer

The primary detector of TWIST is a high precision spectrometer. This spectrometer

consists of 44 planar drift chambers (DCs) with 12 multi wire proportional chambers

(PCs) contained within a 2 Tesla super-conducting solenoid. A muon scintillator

at the far upstream end of the detector provides a low mass trigger for the muon

decay events. The chambers are mounted in the detector cradle such that all the

chambers are perpendicular to the beam direction (the z direction). Each chamber

is separated from its neighbours by a set of precisely machined Sitall spacers. The

variation in the thicknesses for these spacers was ∼ 3µm from the design thickness.

The Sitalls are arranged in the stack in sets of four. For a given set the variation in

the thickness of the Sitalls within that set is less than 0.5 µm. The stack is placed

under compression so the z position of a given wire plane is known to high accuracy.

Each of the chambers, when inserted into the spectrometer stack, is either oriented

+45(U) or -45(V) degrees from vertical when viewed from the upstream end of the

detector, and mounted in UV pairs to provide a Cartesian coordinate system. The

chambers are then mounted in modules of two or four planar chambers all arranged

symmetrically about a central stopping target. As the wire chambers provide the

bulk of the information for a given decay event, I will continue by discussing the wire

chambers in a little more detail.

3.2.1 Proportional Chambers

The proportional chambers are used to produce the timing information for a given

event. For this purpose PCs appear in two distinct sets of modules within the

spectrometer. At the far upstream and downstream ends of the detector a module

of two UV pairs of proportional chambers to provide a time for the muon entering
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Figure 3.2: A conceptual view of the TWIST spectrometer

the tracking volume (or time of the positron exiting the tracking volume). In the

centre of the tracking volume there is another module of four PCs about the target

to similarly measure the time when the muon enters the stopping target and when

the positron leaves. This information is primarily used the the event classification

during the analysis.

Each chamber uses a two 6.35 µm sheets of doubly aluminised mylar foil as a

cathode plane and a set of 15 µm tungsten sense wires with a pitch of 2.0 mm

as an anode plane. A fast gas (CF4/isobutane) was used in these chambers to

ensure accurate timing. The distance between cathode planes is 4.0 mm. The two

chambers at the centre of the target module use the stopping target as the central

cathode. During the 2002 running the target was made out of 125 µm mylar sprayed

with conducting graphite. This target has since been replaced with a high purity

aluminium stopping target due to significant depolarisation within the mylar target.

As a result, the average polarisation of the muons at the time of decay, and the

best polarisation that we might expect for an anisotropic decay, during the 2002 run

period is 0.89.
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Figure 3.3: A side view of the TWIST detector stack

3.2.2 Drift Chambers

The drift chambers are primarily responsible for the tracking of particles through

the detector. These chambers are very much like the proportional chambers in their

construction with a few exceptions. The main difference is that the sense wires are

strung with a 4 mm pitch to increase the drift distances. A “slower” gas (Dimethyl

ether or DME) was chosen to be used in the DCs due to its low Lorentz angle (smaller

drift due to the applied magnetic field) and good spatial resolution. The DCs are

arranged in seven UV modules to each side of the target module and an eight plane

module, called the dense stack, at either end of the tracking volume (where the

planes are oriented as VUVUUVUV). The arrangement of the modules in the cradle

was meant to eliminate periodicities in the detector. This effort was not completely

successful. I will return to this issue in section 4.1.2.

The spatial resolution of the drift chambers is the limiting factor for the resolu-

tion of the momentum. Two primary factors limit this resolution; the mechanical

precision of the detector and the properties of the drift cell. The mechanical preci-

sion issues include the alignment of the wire planes and quality control during the
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construction of the planes. The drift cell properties are dictated by the ionisation

density and drift velocity of electrons and ions within the gas used in the drift cell.

These combine to produce a resolution less than 50 µm for tracks greater than 1mm

away from the wire. For track closer than 1mm the resolution increases dramatically

as shown in Fig. 3.4 due to the ionisation clustering.

Figure 3.4: Points designate the measured resolution as a function of track distance

from the wire. The dashed curve is the resolution from the GARFIELD calculation.

The solid line shows includes the quadratic addition of a 30 µm multiple scattering

contribution as well as a 1.5 ns time resolution contribution.



Chapter 4

Methods for the Peak Search

4.1 Preliminary Analysis

The analysis that I describe here is ancillary to the primary TWIST analysis. Much

of the processing of the raw data required by TWIST for the purpose of measuring the

Michel parameters can be used in a search for rare decays with a minimal amount of

reprocessing. However, several issues in the processing of the raw data require some

attention here as they affect the final analysis of the peak search.

4.1.1 Helix Fitting

After a particle passes through the drift volume, the trigger times (from the upstream

scintillator and proportional chambers), and drift times are recorded. It is the job of

the helix fitting to first translate these times into positions utilising the GARFIELD

software package to set a minimum distance between the wire and the trajectory

of a particle. The helix fitter then calculates the trajectories of the positrons given

these hit positions to produce the positron’s momentum and angle. The equations

of motion for a moving particle in a constant uniform magnetic field are

x = x0 +
ptc

eH
cos(

eH

E s + ϕ)

y = y0 +
ptc

eH
sin(

eH

E s + ϕ)

z = z0 +
pl

E s. (4.1)

17
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Here I have used pt, the transverse momentum of a particle and pl the longitudinal

momentum of the particle. I have written this equation is in terms of s, the path

length that the particle traverses. As the particle that we are primarily interested

in, the positron, is moving very near to the speed of light, s=ct. The values x0, y0,

z0, and ϕ are constants within the fit describing an initial position for the helix. The

remaining variables H, e, c, and E , are the magnetic field, positron charge, speed of

light and the energy of the positron respectively.

From this we can see that the radius of the helical track gives us the transverse

momentum while the “wave number” of the helix gives us the longitudinal momentum

of the positron. The value of cos θ can be found from the ratio of the longitudinal

momentum and the total momentum (ptot). This is a simple proposition theoretically.

Complications such as multiple scattering and inhomogeneities of the magnetic field

make the problem much less tractable in reality. However, the corrections required

by these complications will not be discussed here.

A cut that occurs at this stage of the analysis is a cut on the time between the

muon trigger and the appearance of the positron. This time cut is made to ensure

the quality of the fit of the track; the tracks made by positrons that result from fast

decays can be spoilt by ionisation remaining near the wires due to the passage of the

muons. This cut amounts to cutting out all decays that occur less than 700 ns after

the muon stops and results in a loss of 36% of the initial statistics.

An important function that is also completed at this stage of the analysis is the

event classification. The time information from the PCs is used for this purpose,

separating events into one of 31 mutually exclusive event types. These classifica-

tions are made considering such things as the time between the muon stop and the

subsequent decay into a positron, the number of muons that appear in the event,

and whether there exists unwanted background such as beam positrons. Only those

events which can be reconstructed with a high efficiency, such as events with a muon

and decay positron which are well distinguished in time, are included in the data

used for the final analysis. The event types which are kept by the analysis are shown

in table 4.1. From the table, one can see that 40% of the decay tracks that occur 700

ns after the muon stop are kept by this cut on the event type. The events cut from

the analysis at this stage are typically events where the muon and decay positron
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Event Type Description Fraction of Events

for t > 700 ns

1. Simple, Clean Muon and decay positron 0.303

separated by 1050 ns

2. Time Clean Muon, decay positron, and beam 0.0855

positron(s), separated by 1050ns

6. Simple Delta Muon, decay positron separated 0.0060

Cleaned by 1050 ns. Delta ray from

positron measured

7. Time Delta Muon, decay positron, and beam 0.0017

Cleaned positron(s), separated by 1050ns.

Delta ray from positron measured

10. Simple Scatter Muon and decay positron 0.00073

Cleaned separated by 1050 ns. Positron

hits on both sides of muon stop

11. Time Scatter Muon, decay positron, and beam 0.00021

Cleaned positron(s), separated by 1050ns.

Positron hits on both sides of

target.

21. Simple Beam Muon and decay positron 0.0031

Positron separated by 1050 ns. Decay

Cleaned positron appears to be within

200 ns of a beam positron.

22. Time Beam Muon, decay positron, and beam 0.00089

Positron positron(s) separated by 1050 ns.

Cleaned Decay positron appears to be

within 200 ns of a beam positron

Total 0.4021

Table 4.1: Fraction of events measured in data for the event types kept by the

analysis. A brief description of the event is included. Note that the only particles

appearing in the “Simple” events are the particles listed; no other tracks appear in

the event.
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are not separated by enough time for the respective tracks to be resolved properly

(Hence the presence of the implicit cut of decay times less than 1.05 µs) or events

where there is no muon and the event was triggered by a beam positron. A far more

complete description of the event types and the event classification procedure in [17].

Further cuts will be discussed in Sec. 4.1.2, and summarised in table 4.2.

4.1.2 Important General Results

A few consequences of the reconstruction process are of key significance to the search

for two body decays. Although it does not become an issue for the standard analysis

of the Michel parameters due to usage of the Monte Carlo simulation in the spectrum

fitting (see Sec. 4.2.1), the reconstruction efficiency will become important in the

measurement of the two body decay branching ratio. Similarly, the momentum

resolution after reconstruction is of central importance to the search for two body

decays. The measurement of the resolution as well as some possible reasons for the

result of the measurement will be described. Finally the choice of the fiducial region

will be discussed in detail.

Acceptance and Reconstruction

During the reconstruction we can expect some events to be lost or misplaced due

to inefficiencies in the helix fitter. At the same time it is important to quantify

the total number of events lost due to the various cuts on the data made during the

analysis. A simple and reasonably easy way to check this is to run a simulation of the

experiment and see what happens to the events. Comparing the reconstructed surface

muon decay spectrum, after all cuts on the data (which are summarised in Table 4.2),

with the surface muon decay spectrum initially created by the Monte Carlo (after a

cut on the decay time) gives us a direct measure of the events lost for any given bin

in p and cos θ. The result of the ratio of these spectra is shown in Fig. 4.1. Also

shown in this figure is the fiducial volume for this analysis. The effect of the fiducial

cut on the statistics is also included in Table 4.2. One of the primary motivations

for this fiducial was consideration of region of high reconstruction efficiency in this

ratio. The fiducial region will be described in more detail later in this section.
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Cut Ratio of Tracks left Ratio of Tracks left

by cut in data by cut in Monte Carlo

Muon decay time:

set at 0.7 µs 0.7264 0.7264

TCAP: cut to remove

cloud muons from data set 0.6495 1.0000

Event type: see Table 4.1 0.4021 0.4435

Stopping z: Cut on the

muon stopping position 0.7510 0.8838

Muon radius cut at 2.5 cm 0.9672 0.9601

Decay window time: Cut at

10 µs after event start 0.9897 0.9608

Number of tracks in window

only one event in window 0.9977 0.9978

Reconstruction error made

by the helix fitter 0.9564 0.9548

Cut ensuring events start

and stop in the same half 0.9947 0.9977

of the detector

Fiducial 0.3492 0.3464

Total fraction of events

remaining after cuts 0.0622 0.0863

Table 4.2: A list of cuts made on the data and Monte Carlo simulation. The ratio of

candidate decay tracks shown here is the number of tracks remaining after the cut

divided by the number of tracks just before the cuts. Note that the candidate tracks

that are removed by the TCAP cut are not generated in the simulation; thus the cut

does not affect the Monte Carlo tracks
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This figure shows the weaknesses and strengths of the TWIST detector recon-

struction coupled with the effects of cuts on the data intended to ensure the quality

of the data. The losses due to cuts on the event type is the primary cause of the loss

of statistics shown in figure 4.1. The cuts on the data leave about 78 percent of the

statistics seen in the data generated by the simulation inside the fiducial region. The

efficiency of the reconstruction itself is very high. However the reconstruction also

generates the fine scale structures seen in figure 4.1. The bands showing a higher

reconstruction efficiency compared to the surrounding region are of particular inter-

est. These bands follow lines of constant longitudinal momentum and are typically

generated by periodicities within the detector itself. These periodicities produce he-

lices with significant errors. Areas of the phase space are obviously inaccessible at

extremely low angles, due to the inability to resolve the transverse component of

the momentum at these angles. Furthermore we can see that the number of tracks
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Figure 4.1: Ratio of the number of reconstructed events after the cut on event

classification divided by the events accepted by timing cuts before reconstruction for

any given cell in the phase space. The black lines describe the fiducial volume that

is used for this analysis.
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successfully fit drops off significantly at longitudinal momenta below 6 MeV/c. Fi-

nally, a sharp drop at | cos θ| < 0.2 occurs because multiple scattering at these angles

impedes the reconstruction of the tracks.

Some of the cuts in Table 4.2 possess a momentum or angle dependant component.

In particular high angle events will be removed from the reconstructed spectrum by

the event type cut. This makes the summary of cuts appear far more aggressive than

Fig. 4.1 would suggest. The existence of multiple candidate decay tracks within a

decay window will also increases the number of tracks measured over all, increasing

the statistics used in this description of the cuts. Most of these extra candidates

are also removed by the event type cut, but subsequent cuts exist to ensure that

only one decay track is contained within an event window. Specific examples of such

cuts are the cut on reconstruction errors and the cut on the number of decay tracks

contained within an event window. A definitive list of the cuts shown in Table 4.2

appears in [18].

A cut that is different between the data and the simulation is the TCAP cut.

This is the cut that removes the cloud muons from the spectrum using the time

structure of the muon beam. However, the simulated spectrum was generated to

match the surface muon spectrum. Therefore no cloud muons were generated. The

absence of cloud muons from the simulation should not effect the measurement of

exotic decays, however. The change in the polarisation between the surface muons

and the cloud muons should not change the proportion of exotic muon decays.

Momentum Resolution

Comparing the generated and measured momenta on an event by event basis, gener-

ates a measure of the momentum resolution for all points in the muon decay distri-

bution. Since we know the momentum of each Monte Carlo event before and after

reconstruction, we can take the difference of these two values to generate a distribu-

tion of deviations of the momentum from the true value. This distribution possesses

asymmetric tails. However the tails of this distribution are very small, allowing the

distribution to be approximated by a Gaussian. Measuring the Gaussian width for

each point in the phase space produces the momentum resolution field shown in Fig.

4.2.
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We can see a number of features here that parallel the features seen in the re-

construction efficiency. The sudden increase in the resolution width at high angles

parallels the low percentage of reconstructed events appearing at these angles. A

particularly interesting feature is that the resolution seems to vary as |1/ sin θ| for

| cos θ| between 0.50 and 0.85. We can understand this dependence quite easily if we

consider the primary contribution to the resolution to be the finite spatial resolution

within the drift cells. If each drift cell measures the positron track to be a distance

x away from the wire centre, while the transverse momentum is proportional to the

radius of the helix, then the error of this radius is inversely proportional to the square

root of the number of hits times the error in the measurement of the track position.

Thus,

δpt ∼ δr ∝ δx√
n

. (4.2)

Meanwhile we must recall that, the transverse momentum is the sine of the total
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Figure 4.2: Detector resolution as a function of momentum and cos θ. Colour scale

shows the magnitude of the detector resolution, in MeV/c. The black line describes

the fiducial volume used in this analysis
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momentum. Therefore,

δptot ∼ δpt

| sin θ|

∼ δx√
n| sin θ| . (4.3)

While this model explains the gross behaviour of the detector resolution, it is far

from a complete description as there are features that appear in Fig. 4.2 that cannot

be entirely understood through this line of reasoning. For example this model does

not contain the multiple scattering that is responsible for the increase in resolution at

high angles or reflect the possibility of a track passing through multiple drift cells in

a plane. For this reason the widths measured directly from the simulation as shown

in the figure were used for the detector resolution.

Fiducial Choice

In view of these results, an a priori decision on the fiducial region in which we will

conduct our search can be made. The first fiducial cut eliminates positrons that hit

the glass frames holding the wire chambers in place. This consists of a cut on the

transverse momentum at 38.5 MeV/c. Similarly there are cuts on the angle such

that 0.50 < | cos θ| < 0.85 to avoid areas of the fiducial where the reconstruction is

poor due to steep tracks or extremely narrow helices.

Of particular note is the cut made on low longitudinal momentum at 13.7 MeV/c.

This cut was made with the purpose of avoiding areas where the reconstruction is

poor due to detector periodicities mentioned before. When positrons move in the

direction of the detector axis at these momenta, an ambiguity in the reconstruction

of a track appears, dramatically increasing the error on the reconstruction of the

transverse momentum. As the highest longitudinal momentum where this periodicity

appears is at 12 MeV/c, this cut at pl = 13.7 MeV/c conservatively removes these

poorly reconstructed events from the fiducial.

The final two cuts are necessitated by the goals of the fitting exercise. A fiducial

cut on the total momentum was motivated by the number of bins available given

the longitudinal momentum cut at low total momenta. The longitudinal momentum

cut makes the fiducial more narrow in cos θ as the total momentum decreases. As

the peak search is looking for mono-energetic peaks in the spectrum, the wider the
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fiducial is in cos θ, the better the fit will be. On the other hand, if the fiducial

covers a very small range of cos θ at a given momentum, the decreased statistics will

produce misleading effects, such as artificial structures in the spectrum or increased

error, that confuses the peak search at low momenta. For this reason, a lower bound

was placed on the total momentum at 20.0 MeV/c. The upper bound on the total

momentum is a little bit more fluid as the only limiting factor is the quality of the

simulation and the data. For this reason the upper bound can be allowed to approach

the endpoint of the spectrum at 52.827 MeV/c. An upper fiducial limit excluding

the endpoint was used for the determination of the Michel parameters in order to

reduce the sensitivity of the result to the response of the detector. I can include the

endpoint of the spectrum in this search for exotic decays because I am not concerned

with producing the best errors on the Michel parameters. I will discuss the sensitivity

of the Michel parameters to the inclusion of the endpoint, in section 5.1.1.

4.2 Fitting The Spectrum

To look for the presence of a peak I need to fit the entire muon decay spectrum with

a good knowledge of the background. Due to the quality of the TWIST spectrum

the only background I need to consider is the Michel decay spectrum. The methods

developed for the purpose of the measurement of the Michel parameters are the

best tools available for the purpose of determining this background. These methods

use the linearity of the Michel spectrum with respect to the Michel parameters to

generate a fit based on the Monte Carlo simulation of the spectrum. Generating

the fit in this way eliminates the requirement for knowledge of the reconstruction

efficiency of the detector, as the data spectrum and the fit to the data spectrum

are treated in exactly the same way by the analysis and reconstruction effects will

cancel out. The absolute value of the Michel parameters does not need to be known

either using this method as one only sees the change in the Michel parameters with

respect to some reference value for any given parameter. The reference value can be

hidden immediately before the generation of the simulation. This allows TWIST to

use a truly blind analysis for the Michel parameters. This ability to fit the Michel

parameters in a blind way was maintained within the analysis program described
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here, even though blindness to the Michel parameters is not required in the search

for exotic decays.

While it is not strictly necessary to refit the Michel parameters every time a

fit for an exotic particle is carried out, the analysis procedure described here does

exactly that. It turned out to be less work to preserve all of the features of the

existing program, making this analysis more sophisticated than it needs to be for the

purpose of looking for peaks in the spectrum. On the other hand this measurement of

the branching ratio includes the errors on the Michel parameters, which are expected

to be small with the uncertainty in the branching ratio, as a direct result of the fitting

process.

4.2.1 Fitting the Michel Spectrum

Rather than fitting the shape of the Michel spectrum directly to the data, TWIST

exploits the linearity of the equations 2.2 and 2.3 to generate a fit derived from Monte

Carlo. Consider the differential muon decay distribution in momentum, p, and cos θ.

If I expand about some preselected values of the Michel parameters, ρ0, η0, Pµξ0,

and Pµξδ0,

∂2Γfit
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∣
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For a parameter $, the change between the value of $ and $0 is ∆$. It should be

noted that any given derivative of the spectrum in a given parameter is independent

of that parameter. These derivatives are simulated and analysed in the same way as

the standard Monte Carlo. The data and Monte Carlo spectra are both normalised

to one within the fiducial region during the fit. This means that the fit result has an
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implicit normalisation equal to the number of Monte Carlo events contained within

the fiducial region.

Using this spectrum expansion to generate a fit has the benefit of removing any

biases that result from the reconstruction, as all the spectra; data, Monte Carlo

and derivatives; are treated in the same way. Thus, for the purpose of a search

for peak resulting from exotic decays, effects such as detector periodicity, which

could possibly generate a false exotic decay signal already exist in the the simulated

Michel spectrum, removing any need to introduce further corrections. However, the

availability of Monte Carlo also places a limit on the sensitivity of a peak search. As

the sensitivity is based on the quadratic sum of the statistical fluctuations of the data

and the Monte Carlo simulation the generation of the Michel spectrum fit by this

method increases the error in the branching ratio of any peaks that may be found by

the search. To limit the relative significance attached to the statistical fluctuations

of the simulation, the Monte Carlo data sets contain roughly 150% more events than

the data. Although it may be of interest to measure the branching ratio directly

using a smooth Michel Spectrum, such an approach would neglect the effects of the

reconstruction that are implicitly accounted for by using this Monte Carlo fitting

approach.

4.2.2 Addition of the Peak to the Fit

To search for a two body exotic muon decay one must add a mono-energetic peak

to the fit spectrum. As the mono-energetic peak is assumed to have very little

intrinsic width, the resonance will have the shape of the response function of the

detector. Because the resolution is angle dependent, the response function adds an

angular dependence to the peak, even when an isotropic exotic muon decay signal

is considered. Various effects, such as hard scattering of the positrons, enhance

the tails of the distribution making a Gaussian approximation not quite sufficient

for a reasonable estimation of the detector response. Instead a double Gaussian
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distribution was adopted to better approximate the response function [19],

fDG(p; p̄, σ1(p̄, cos θ),
N2

N1

,
σ2

σ1

) =

1
√

2πσ2
1(p̄, cos θ)(1 +

N2

N1

)

(

exp

(

− (p − p̄)2

2σ2
1(p̄, cos θ)

)

+
N2

N1

σ1

σ2
exp

(

− (p − p̄)2

2σ2
1(p̄, cos θ)

σ2
1

σ2
2

))

.

(4.5)

In this function the ratios N2/N1 and σ1/σ2 are treated as properties of the detector

response and are held constant within the fiducial. The width of the peak σ1(p̄, cos θ)

was determined directly from the Monte Carlo in the method described in Sec. 4.1.2.

The free parameter of this response function is the peak mean, p̄. The function is

multiplied by a constant to match the amplitude of the fit peak to the amplitude of

a peak in the data. As this is a normalised double Gaussian the constant factor will

be the area under the peak. The branching ratio, denoted as BeX0 , associated with

the peak is the second free parameter associated with the peak and is proportional to

the area of the double Gaussian, with the appropriate scaling factors. The function

fit to the peak is

fpeak(p, cos θ; p̄,BeX0) = BeX0AfDG(p, cos θ; p̄). (4.6)

where A represents the factor relating the peak amplitude to the branching ratio. I

will continue by describing the components of this scaling factor.

The first contribution to the scaling of the peak amplitude explicitly includes the

reconstruction efficiency, and the effect of the cuts applied to the data, in the double

Gaussian peak. The purpose of this is to make the area measured using the double

Gaussian model consistent with the normalisation implicit in the Michel spectrum

fitting procedure. As these effects are both dependant on the momentum and angle

of the reconstructed decay positron, this scaling must be done for each bin in p and

cos θ. The effective peak in the fit becomes

feff (p, cos θ;BeX0 , p̄) = BeX0

Nrec(p, cos θ)

Ntrue(p, cos θ)
fDG(p, cos θ; p̄), (4.7)

where Nrec(p, cos θ) is the number of events reconstructed in the analysis at a given

momentum, p, and cos θ, after all of the cuts (excepting the fiducial cuts) are applied

to the Monte Carlo, while Ntrue(p, cos θ) is the number of the surface muon decay
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events generated by simulation that pass only the 0.7 µs decay time cut for the same

p and cos θ. This ratio of spectra is exactly the histogram shown in figure 4.1. An

example of the results of equation 4.7 was shown in Fig. 2.2.

The remaining contributions to the scaling of the amplitude necessary to generate

the branching ratio are constant factors to account for the restricted fiducial. Because

the signal for the exotic decay signal is localised in momentum, the factor relating

the number of counts contained in the fiducial to the total number of expected counts

is number of events expected within the fiducial at p̄ integrated over cos θ, divided

by the number of events observed at p̄ integrated over all cos θ. The corresponding

factor for the Michel decays is the number of events expected for all momentum and

angle divided by the number of events contained by the fiducial (since this factor

is meant to scale the denominator of the branching ratio). Including all of these

normalisations the spectrum used in the fit becomes,

Ffit(p, cos θ) =
∂2Γfit

∂p∂ cos θ

∣

∣

∣

∣

ρ,η,Pµξ,δ

+

BeX0

Ntrue

Nfid

[∫

fid(p̄)
Ntrue(p̄, cos θ)d cos θ

∫ 1

−1
Nrec(p̄ cos θ)d cos θ

]

Nrec(p, cos θ)

Ntrue(p, cos θ)
fDG(p, cos θ; p̄)

(4.8)

Here I have used Ntrue to represent the total number of Monte Carlo events in the

full muon decay spectrum, and Nfid to represent the number of Monte Carlo events

reconstructed within the fiducial. The notation fid(p̄) applied to the integral over

cos θ serves as a reminder that the integral is over the fiducial range of cos θ at

the momentum, p. After these corrections the value of BeX0 accurately reflects the

required branching ratio. An example of the results of the fit to the peak appears in

figure 4.3. For reference, the peak in this figure is overlaid with the residuals of the

data and the fit to the Michel spectrum without the peak.

4.2.3 Particulars to this Fitting Method

These functions may now be used to determine the best branching ratio for any

two body decays accessible within the muon decay spectrum. To find all possible

decays accessible to muon decay, the momentum range is subdivided into a number
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Figure 4.3: Projection of the peak generated using this method (�) overlaid with

the difference between the data and the Michel spectrum fit (•). The vertical scale

is the number of events per 20 keV/c bin in momentum divided by the total number

of events contained in the fiducial range of the histogram.

of ranges, all on the order of the momentum resolution in width (approximately 200

keV/c). For each subrange in momentum the fit is repeated, with the peak mean

restricted to be within the subrange and all other parameters left as free parameters.

Fitting a peak to the spectrum was done in a way to find positive peaks in a

given region of the spectrum, even in the presence of a more significant negative

peak. All fits are done using the ROOT Minuit class [20] to find the best fit in

the Michel parameters using the χ2 statistic. However, one must consider that the

best fit in this case does not necessarily produce the most appropriate value for the

branching ratio; in this case I want the most positive value within a subrange that

still minimises the χ2. To this end, the exotic decay peak is fit to the residuals of the

data and the Michel Spectrum fit a maximum of three times within each momentum

subrange. The first fit allows all of the fit parameters to vary freely (excepting the

constraint on the mean peak position). If the fit produces a negative branching ratio,

the fit is redone using a fixed, positive branching ratio, with the purpose of finding

where the residuals of the Michel fit is the most positive. When this minimisation is
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complete the χ2 is again minimised by altering the value of BeX0 , while leaving all

the other parameters fixed. This technique was chosen to find the largest positive

peak within a given momentum subrange even in the presence of a negative peak

which yields better χ2. A byproduct of this method is that the fits tend toward

the edges of the fitting subrange if a maximum does not exist in a given fit range.

This tends to result in an unrealistically small error on the position of a peak at the

edge of a subrange due to the method used to constrain the momentum. It is for

this reason that the branching ratio is not constrained to positive values as I want

the error to be as accurate as possible. This method was chosen to find the largest

possible peak within a given subrange, while avoiding troughs appearing within the

spectrum because of statistical fluctuations, and minimising the number of peaks

counted multiple times.

In the early stages of this analysis the fit was done using both the complete spec-

trum (the distribution differential in energy and cos θ) and the spectrum integrated

over cos θ. A fit using an angle integrated spectrum is a good way to improve the

statistics of a peak and quickly remove any effects that may be due to any small

statistical fluctuations which are localised in angle. However, after noting the high

angular dependence of the momentum resolution and the subsequent result on the

response function, this approach was questioned as being too simplistic. It was finally

decided to stop using fits of the angle integrated spectrum when it was discovered

that the result of a fit using the complete spectrum generates smaller errors when

there is a large amount of background anisotropy. This conclusion is demonstrated

in appendix A.

4.3 Definition of Confidence Intervals

Using the branching ratio resulting from the fit we may define a corresponding con-

fidence interval. This is a range of values which contains the true value of an exper-

imental parameter Typically a confidence interval may be defined by locating where

the normal distribution of the errors centred at the mean value produces a integral

under the curve equal to a prescribed value. However the classical method, also re-

ferred to as the Neyman method of defining confidence intervals is not sufficient for
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the interpretation of the small signals we expect. If the signal is too small the classi-

cal interval allows for the existence of negative signals, which is an unphysical result

for a branching ratio. A decision must be made after the measurement whether the

Neyman construction is consistent with zero and an upper limit is adopted rather

than a two sided interval. This “flip-flopping” often leads to an over-coverage of the

confidence interval. To avoid having to make this decision, an alternate method of

defining the confidence intervals, advanced by Feldman and Cousins [21], was used

for this analysis.

The Feldman Cousins method for defining the confidence intervals uses an explicit

ordering principle to define the confidence interval. For every value of the measured

parameter x, an ordering function, R(x; µ) is defined. The purpose of this ordering

function is to determine the relationship between the upper and lower limits of the

confidence interval. With this, an interval x ∈ [x1, x2] can be found which satisfies

R(x1; µ) = R(x2; µ) and

α =

∫ x2

x1

P (x; µ)dx (4.9)

where α is the required frequency of the true result existing within the interval for

repeated experiments. The confidence interval is therefore defined as the interval

of possible true values for the experimental parameter, µ ∈ [µ1, µ2] where µ1 is

the smallest µ that allows an x interval that contains the measured value of the

parameter, x0 (ie. µ such that x0 = x2) and µ2 is the largest µ that allows an x

interval containing x0 (ie. µ such that x0 = x1).

The ordering function which I use is represented as

R(x; µ) =
P (x; µ)

P (x; µbest)
. (4.10)

where we define P (x; µbest) to be the maximum likelihood. For physically allowed

values of x, µbest = x while for values of x which are non-physical µbest is taken to be

zero. This acts as a soft constraint on the summation of the probability distribution

function.

In this particular case the likelihood has a Gaussian distribution of width σ

constrained to positive values of the branching ratio. For this reason a piecewise

definition of P (x; µbest) is used to produce a soft constraint on the lower limit of the
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Figure 4.4: The ordering function, R’, in the particular case of the addition an

isotropic peak to the Michel spectrum, for two different central values of the branch-

ing ratio.

confidence limit where the lower limit is less than zero.

P (x; µbest) =















1√
2πσ2

if x ≥ 0

1√
2πσ2

exp

(

− x2

2σ2

)

if x < 0
(4.11)

For values of x greater than zero, P (x; µbest) is the maximum likelihood, while for

values of x less than zero it is the probability of x appearing should the probability

distribution function be centred at zero. This choice impacts on the confidence level

by allowing the smooth transition of confidence intervals from central valued to one-

sided as the measured branching ratio goes from large branching ratios to branching

ratios consistent with zero.

An equivalent expression for the ordering function can be produced by considering

the ordering function R′ = −2 ln(R), where R is expression 4.10 using P (x; µbest)

defined in equation 4.11. For a given measured value of the branching ratio, x, with
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a Gaussian distributed error, σ, the ordering principle becomes,

R′(x; µ) =











(x − µ)2

σ2
if x ≥ 0

µ2 − 2xµ

σ2
if x < 0.

(4.12)

Note that the true value of the branching ratio µ is limited to positive values. This

requires that the slope of the ordering function when the function is linear (for

negative x) is negative with a value greater than zero. This means that it is always

possible to find a solution to R′(x1; µ) = R′(x2; µ) for all allowed µ. The curves

described by equation 4.12 for the particular case of adding a peak to the Michel

spectrum using two different branching ratios (with different errors) appear in Fig.

4.4.

Using this definition of the ordering principle one may find an algebraic condition

where R′(x1; µ) = R′(x2; µ). The upper and lower limits of the confidence interval

can then be found by assuming that x1 = x0 and x2 = x0, respectively, and solving

equation 4.9 numerically to find µ2 and µ1. The 90% confidence band generated

using this method appears in Fig. 4.5. This is can be compared directly to the 90%

central valued confidence band generated via the Neyman method. The confidence

intervals were defined for the branching ratio of a given subrange as a part of the

fitting process.
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Figure 4.5: Region with a 90% confidence of containing the true value of the branch-

ing ratio. For a given branching ratio (horizontal axis) the actual value of the branch-

ing ratio lies between the upper limit for the region (N) and the lower limit (H). The

classical 90% central valued confidence region is contained within the brown dashed

lines.



Chapter 5

Analysis Results and Discussion

From the analysis so far described, I produce a series of branching ratios and accom-

panying confidence intervals for the range of momenta contained within the fiducial.

With these plots one can infer the range of values for the branching ratio which are

consistent with the measured branching ratio. Should we see a branching ratio con-

sistent with the presence of a previously unknown particle, the mass of that particle

can be interpreted directly using equation 2.8.

As the 2002 data was taken in a number of different conditions for the purpose of

testing systematics, I will first consider the exclusion plots for each separately. The

generation of the exclusion plots for the branching ratios of exotic muon decays have

been done for a subset of these differing conditions. I will then show the same result

for the sum of the data sets.

5.1 Fit to the Michel Decay Spectrum

The result that I am about to describe use the data collected by TWIST in the fall of

2002. This data has already been well studied by TWIST with the results appearing

in [9] and [22]. I will refer to these papers for consistency as the Michel decay is the

background for the two body decay signal. However the published results are not

the final word in the Michel Parameters used in this study. Changes made to adapt

the Michel parameter analysis for the purpose of searching for exotic decays can

introduce variations in the Michel parameters extracted from the spectra. Changing

37
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the fiducial region, for example, produces variations in the Michel parameters. In

particular the inclusion of regions that are sensitive to the detector response function,

such as the region near the decay spectrum endpoint, produces a serious issue that

will be given special consideration. Due to the dynamic nature of the fitting method

it is also reasonable to expect a small variation in the Michel parameter fit as a result

of the presence of the peak. Finally, in order to observe structures in the momentum

on the order of the momentum resolution, I chose to bin the distributions with a

much finer scale in momentum than that used in the TWIST publications to date.

In the standard TWIST Michel parameter analysis the bins in the fitting histograms

are 0.5 MeV/c wide in momentum whereas a momentum bin width of 20 keV/c was

chosen for this analysis.

5.1.1 Sensitivity of the Michel Parameters

For this particular study ρ has the largest sensitivity to a two body decay signal

of all the Michel parameters. The parameter η has only a very minimal impact on

the spectrum because it is scaled by the mass of the electron. Thus η was fixed

at the best world average and subsequently ignored for the purpose of determining

the Michel spectrum. The anisotropic parameters Pµξ and δ have a more significant

contribution to the overall shape of the background. However their contribution is

orthogonal to that made by the introduction of an isotropic peak. As changes in ρ

are the primary source of changes in the energy dependence of the decay spectrum we

can expect that ρ will have the largest impact on, and will be impacted the most by,

the introduction of a mono-energetic peak. For this reason I will focus this discussion

on the value of ρ used in this analysis.

The four data sets and the associated values of ρ for a number of different fiducial

volumes are shown in Table 5.1. All of these fits were generated using different fiducial

regions. The first column shows the value of ρ obtained from a previous analysis for a

fiducial with an upper limit on the total momentum of 50.0 MeV/c and a lower limit

on the momentum of 13.7 MeV/c. The second column is the result for ρ generated by

this analysis using a histogram bin width of 20 keV/c (as opposed to the 0.5 MeV/c

bin width used in the first column) and a lower limit on the total momentum of 20.0

MeV/c (leaving the upper limit unchanged with respect to the first column). The
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Data Set ρ from [18] ρ for ptot < 50.0 ρ for ptot < 52.827

and ptot > 20.0 and ptot > 20.0

Set A 0.75083±0.00083 0.75270±0.00085 0.75230±0.00069

Set B 0.74911±0.00066 0.74914±0.00067 0.74866±0.00055

B = 1.96 T 0.74956±0.00066 0.74993±0.00061 0.74926±0.00054

B = 2.04 T 0.75203±0.00071 0.75267±0.00072 0.75139±0.00059

Table 5.1: Results of fitting the Michel parameter ρ for selected TWIST muon decay

spectra. The errors shown are purely statistical and do not reflect the systematic

uncertainties.

third column shows the values of ρ measured using the fiducial regions described in

full in Sec. 4.1.2 with the upper limit on the total momentum expanded to include

the endpoint of the Michel spectrum.

The first two columns show the effect that the choice of binning has on the Michel

parameters. This shows a change in the Michel parameters that is reasonable given

the errors in all cases but that of set A, where we see a 2σ difference between the two

results. This difference only appears in this set and not in the others because data set

A was one half the size of the other data sets, with correspondingly lower statistics

at low momenta. This allows for much more variation in the central value of rho

as the statistical errors on a given bin at low momentum become as large as 20% of

the counts in the bin. Excluding the areas of the histogram with poor statistics or

including areas of higher statistics momenta reduces the difference between the two

measurements of of ρ. This argument extends to the other Michel parameters.

Comparing the last two columns affords a view of the effect of changing the fidu-

cial to include the endpoint has on ρ. It appears that the change in the parameters

due to the increased fiducial region is not so great as the change due to the binning.

The errors shown are statistical only and do not reflect the error due to systematic

uncertainty. The systematic uncertainties also depend on the choice of fiducial, but

in a non-trivial manner. The inclusion of the endpoint in particular will have a very

large effect on the systematics. Since this measurement is only for the determination

of the background of a two-body decay signal the deviations in the Michel param-

eters and the systematic uncertainties generated by choices in the fiducial and the



CHAPTER 5. ANALYSIS RESULTS AND DISCUSSION 40

histogramming of the data can be ignored.

The introduction of the mono-energetic peak itself may generate a change in

the Michel parameters. Indeed when one looks at the distribution of the Michel

parameters for a given set about the result of the fit without a peak one does see

small variations (see Fig. 5.1). However these variations are well below the level of

the statistical error in the fit and do not become an issue in the definition of the

Michel fit.
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Figure 5.1: The variations in the Michel parameters resulting directly form the inclu-

sion of mono-energetic peaks a various momenta. The top row shows these variations

in set B for ρ, and the products Pµξδ and Pµξ. The second row contain the same

variations for set A.
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5.1.2 Quantifying the Endpoint Kinematics

A consistent problem in the first TWIST analysis was a mismatch of the momentum

resolution, measured at the endpoint of the Michel spectrum, between the data and

the Monte Carlo simulation. Typically this difference between the endpoint resolu-

tion of the data and the simulation was between 4 keV/c and 7 keV/c, approximately

a 5 to 10 percent difference in the resolution. This difference in the momentum reso-

lution does not affect the measurement of the branching ratio. To verify this I added

a constant 10 keV/c to the momentum resolution used by the peak fitting algorithm

and applied the analysis to a typical data set. No detectable change appeared in the

branching ratios measured using this difference altered resolution.

While this difference can be ignored for the purpose of estimating the resolution

throughout the rest of the spectrum, the mismatch at the endpoint is of concern

because it manifests itself as a peak (or trough) at the endpoint. For this reason this

region is excluded from the fiducial in the standard Michel parameter fits. However in

this study the endpoint cannot be ignored completely as the endpoint is the primary

region of physical interest. For this reason I will provide an estimate of the effect

that this resolution mismatch has on the endpoint

The theoretical spectrum has a kinematic cutoff which is described as a step

function with an amplitude corresponding to the value of the Michel spectrum at

the endpoint. A convolution of the response function with the endpoint this can

be approximated as an error function with a width equal to the resolution at the

endpoint. Recalling that the resolution varies as 1/| sin θ| within the fiducial, I can

produce a simple model of the endpoint of the Michel spectrum using the standard

model values for the Michel parameters.

H(x, cos θ) =
p2

Np2
max

(

3 − 2
p

pmax

− Pµ

(

2
p

pmax

− 1

))

× Erf

(

(pmax − p) sin θ

σ0

)

(5.1)

Here, I have used pmax to indicate the momentum of the kinematic cutoff for the

spectrum, and σ0 to indicate the value of the momentum resolution at the spectrum

cutoff when cos θ = 0. The variable N normalises the Michel spectrum to 1 when the

spectrum is integrated over the fiducial.

As an example I will use the endpoint resolution values associated with nominal

data set B and its Monte Carlo simulation to generate the magnitude of the branching
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Figure 5.2: The model of the endpoint resolution using the endpoint resolutions

from data set B and its associated Monte Carlo. The plot shows the projection

of the endpoint difference onto the momentum axis clearly showing a trough for

kinematically allowed momenta.

ratio we can expect to measure as a result of the mismatch. For set B, σ0 = 74.3

keV/c, while σ0 = 69 keV/c for the associated Monte Carlo simulation. The result

of taking the difference between the endpoint models using these two values for the

resolution is shown in Fig. 5.2. Applying the scaling factors discussed in Sec. 4.2.2

yields a negative branching ratio of 8.7×10−5 immediately before the endpoint. As

the positive peak from this resolution difference appears at momenta higher than the

endpoint, one should not expect to find a positive peak as a result of the mismatch.

The magnitude of this peak is not related to statistics. Rather, it is a function of

the difference between the resolution of the data and the Monte Carlo simulation.

5.2 Consistency Checks using Single Data Sets

Examination of the analysed data sets independently is good for evaluating anoma-

lies that may have appeared due to the problems unique to single data sets because of

running conditions. Exclusion plots were generated for each of the nominal TWIST

data sets. This required a minimal amount of preprocessing beyond that which is
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required for the measurement of the Michel parameters and allows the meaning-

ful consideration of previous studies of the data as a guide for understanding any

anomalies that may appear during this study.

Figure 5.3 show the exclusion plots for the four nominal data sets used in this

study. These include the mean value of the branching ratio measured along with

their upper and lower 95% confidence intervals plotted against the mean momentum

of the peak. The boson masses associated with a given peak found in the momentum

spectrum is shown on the scale at the top of the plot. We can quite clearly see

that the 95% upper confidence limit for all of these sets increases with momentum

and lie between 4×10−5 and 1×10−4. This is reasonable given the statistics. I

can produce an estimate of the expected branching ratio for a given peak in the

spectrum based on the statistics for a single data set by assuming that the events

are uniformly distributed over a fiducial region uniform in cos θ with respect to

momentum and that the detector response has a constant momentum resolution

of 100 keV/c. Given that there are 1.6×107 events in a standard data set, these

assumptions generate peaks, due to statistical fluctuations, with branching ratios

on the order of 2×10−5. A 95% upper confidence limit on a branching ratio of this

amplitude is 5×10−5. Considering that the fiducial and distribution is far more

complicated than the situation described, this estimate seems to indicate that the

measured results are indeed reasonable.

If one looks at the lower limits of the confidence intervals indicated on these

plots one sees several points scattered throughout the sets where the lower limit is

non-zero. Put another way, the branching ratio at this mass is not consistent with

zero at the 95% confidence level. This is not to say that this is evidence for a new

particle, however. In considering a large number of trials, one can always expect to

see some outliers. For all of the data sets there are in excess of 500 resolution widths

at various momenta. At a 95% level of confidence one can reasonably expect there

to be 25 false positive signals. As there are fewer positive signals than this it seems

unlikely that there are any systematic effects contained within the data sets that is

generating false positive signals. A more detailed discussion of particular peaks with

non-zero lower limits will accompany the discussion of the results of the full 2002

data set
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Figure 5.3: Exclusion plot for the presence of isotropic peaks resulting from two body

decays in the nominal data sets for momenta approaching the kinematic limit of the

spectrum. The figures show the upper limits (N), mean values (♦), and lower limits

(H) for the branching ratios of, from top to bottom, nominal set B, nominal set A,

the set with B=1.96 T, and the set with B=2.04 T.
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5.2.1 Treatment of Possible Anisotropy

Anisotropy in the exotic decay signal can introduced by weighting the response func-

tion (described in equation 4.5) with 1±P cos θ as discussed in equation 2.12. By the

arguments outlined in Sec. 2.2.2, the muon polarisations calculated for the nominal

data sets in [23] provide an upper limit for the polarisation P (defined in equation

2.12) expressed by the out going positrons in the decay peak. These polarisations

appear in Table 5.2. For the purpose of the measurement of a branching ratio for

anisotropic peaks I used values of P = ±0.89 to test all of the data sets. Figure 5.4

shows the branching ratios and limits for exotic decays with P = ±0.89.

The most prominent feature that appears, when one compares the positive anisotropic

result to the negative anisotropic result, is the more restrictive upper bound on the

positive anisotropic peak. Indeed, this is more restrictive than the bound set by

the isotropic fit for the reasons expressed in Sec. 2.2.2 and the appendix. For sim-

ilar reasons one can see that the lower 95% branching ratio is not consistent with
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Figure 5.4: The anisotropic branching ratios for Nominal set B with a peak polarisa-

tion of +0.89 (positive anisotropy) in the top figure and -0.89 (negative anisotropy)

in the bottom figure
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Data Set polarisation

Set A -0.895

Set B -0.898

B = 1.96 T -0.889

B = 2.04 T -0.893

Table 5.2: Average muon polarisations

zero for more points in the negative anisotropic analysis as opposed to the positive

anisotropic analysis.

5.2.2 Monte Carlo Test of the Fitting Method

It became very important during the development of the analysis to check the results

generated by the analysis. For this reason I shall discuss a simple check that was

used to make sure that the fitting method generated reasonable branching ratios

using a simple algorithm to insert a peak into a Monte Carlo data set (where there

are no peaks) with a known branching ratio. It is possible to make these artificial

peaks with a given anisotropy to test the ability of the algorithm to measure existing

anisotropy.

I carried out this test at two different momenta, adding peaks to the Michel

spectrum where the spectrum possesses a high anisotropy (at 50.1 MeV/c) and very

little anisotropy (at 35.1 MeV/c). At both momenta, three peaks were generated

with a branching ratio of 1.4×10−4; one with a positive anisotropy (P = 1), one

with a negative anisotropy (P = -1), and one with no anisotropy. Each of these

peaks was then fit with P = 1, P = -1, and P = 0. The results for this test appear

in table 5.3. Some trends do appear in these numbers. Fitting the peak with the

same anisotropy as the generation of the peak always generates a branching ratio

consistent with the branching ratio used to generate the peak. Similarly, fitting the

peak with an anisotropy opposite to that used in the generation of the peak will

suppress the measured branching ratio. Understandably, the existing anisotropy of

the Michel spectrum makes peaks with positive anisotropy stand out when they are

fit with an isotropic peak. The errors for these results are highly correlated as the
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Fit Generated BeX0 at Deviation BeX0 at Deviation

Anisotropy Anisotropy 35.1 MeV/c in σ from 50.1 MeV/c in σ from

(×10−4) 1.4×10−4 (×10−4) 1.4×10−4

+1 +1 1.35±0.25 -0.20 1.22±0.31 -0.58

0 1.00±0.25 -1.60 0.98±0.31 -1.35

-1 0.62±0.25 -3.12 0.78±0.31 -2.0

0 +1 1.36±0.31 -0.10 1.82±0.47 0.89

0 1.31±0.31 -0.29 1.58±0.47 0.38

-1 1.20±0.31 -0.65 1.34±0.47 -0.13

-1 +1 0.48±0.27 -2.70 1.13±0.56 -0.47

0 0.89±0.27 -1.76 1.30±0.56 -0.18

-1 1.09±0.27 -0.91 1.49±0.56 0.16

Table 5.3: Branching ratios produced by fitting peaks with the assumption of posi-

tive, negative and zero anisotropy to simulated peaks with positive, negative and zero

anisotropy. Statistical noise in the Michel spectrum will strongly affect the results.

same background was used for all of these fits. This obscures the effect that I was

looking for in the peak at 50.1 MeV/c as separating the statistical errors in the Michel

Spectrum from the error that is due to the peak is a non-trivial issue. Furthermore,

statistical fluctuations in the Michel spectrum strongly affect the results. However,

there is a trend visible, suggesting that peaks fit with an opposing anisotropy with

respect to the anisotropy of the peak itself will produce a suppressed branching ratio.

5.3 Results from the Complete 2002 TWIST Data

To observe the bound for multiple sets I applied this analysis to the sum of the

histograms of the data sets. Following this addition of the sets the resulting his-

togram was analysed as before using summations of the Monte Carlo base sets and

the derivative spectra, weighted so that the proportion of a given Monte Carlo set

in the final summation matches match the proportion of the data set with the same

experimental conditions represented in the in the data set summation, to complete
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Figure 5.5: Exclusion plots resulting from the analysis of the sum of 2002 data

sets. The top figure shows the exclusion plot generated from an isotropic peak. The

Middle and bottom plots show the positive and negative anisotropic exclusion plots

respectively. This represents an improvement of a factor of two over any single data

set

the Michel parameter fit. The summation of the data sets should increase the sen-

sitivity of this measurement by a factor of two. Figure 5.5 shows this improvement

over any single data set very clearly. This yields a limit on the branching ratio that

is one third of the previous best measurement [4] for the isotropic measurement.

I can also examine this summation of sets for possible decay candidates by looking

for peaks with a non-zero 95% lower limits. As in the case of the single data set the

number of peaks that we should expect to see is equal to the number of resolution
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widths multiplied by the probability of the true branching ratio lying outside of

the 95% confidence limit. In this particular case we should again expect to see a

maximum of 23 instances where the confidence interval associated with the branching

ratio does not contain zero, assuming that the true branching ratio is zero at all

masses and that all measured peaks are entirely due to statistical fluctuations. Cases

where zero is not contained within the confidence interval appears in Table 5.4. In

this table, I have indicated the smallest confidence level that will contain zero for

each of the candidates. Interestingly, some of the cases shown have confidence levels

that exceed 99%. If I consider the largest peak of those shown; the isotropic peak at

36.64±0.05 MeV/c with a 2.87σ branching ratio; and compare the confidence limits

to the (rough) number of resolution widths in the momentum fiducial, I find that I

can expect a maximum of two instances of peaks with this amplitude (500×0.45% =

2.25). By this argument, a candidate peak must exceed 3.1σ before one can claim

that the peak does not entirely appear due to statistical fluctuations. Note that the

peak at 36.64 MeV/c is the peak shown in Fig. 4.3.

The trough, due to the endpoint resolution mismatch, is quite significant with

this summation of sets. To actually measure the significance of this feature, a small

alteration to the peak searching algorithm was made so that it measures the am-

plitude and confidence limits for troughs in the spectrum rather than peaks. The
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Figure 5.6: Altering a sign in the formulation of the fitting function turns the peak

searching algorithm into a trough searching algorithm. This figure shows the upper

limits (H), mean values (♦), and lower limits (N) for the branching ratios.
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Peak Mean Branching Ratio Branching Minimum Confidence

(in MeV/c) of Peak (×10−5) Ratio in σ Interval Containing zero

Isotropic Fit

21.63±0.03 1.59±0.65 2.44 98.54 %

21.93±0.03 1.88±0.62 3.03 99.76 %

24.51±0.03 1.48±0.63 2.35 98.12 %

36.59±0.01 2.31±0.85 2.71 99.32 %

36.79±0.01 1.73±0.85 2.03 95.76 %

36.63±0.05 2.41±0.85 2.84 99.54 %

43.27±0.05 2.15±0.95 2.26 97.62 %

Fit with Positive Anisotropy

21.63±0.04 1.43±0.57 2.51 98.80 %

21.93±0.04 1.26±0.54 2.33 98.02 %

36.59±0.01 1.57±0.70 2.24 97.50 %

36.64±0.07 1.63±0.70 2.32 97.96 %

36.82±0.07 1.46±0.70 2.08 96.34 %

43.27±0.04 2.02±0.74 2.72 99.34 %

44.24±0.05 1.52±0.74 2.05 95.86 %

47.90±0.04 1.74±0.80 2.18 97.00 %

Fit with Negative Anisotropy

21.93±0.03 1.37±0.50 2.74 99.36 %

36.59±0.01 1.88±0.77 2.44 98.54 %

36.64±0.05 1.97±0.77 2.56 98.90 %

41.34±0.05 2.27±0.88 2.58 99.02 %

41.39±0.01 2.12±0.88 2.40 98.36 %

51.50±0.07 3.17±1.44 2.20 97.28 %

51.59±0.01 2.84±1.44 1.97 95.12 %

Table 5.4: Peaks that are consistent with a non-zero branching ratio to 95 % confi-

dence in the summed 2002 data set. For each branching ratio the smallest confidence

level that contains zero is shown.
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result of just this procedure appears in Fig. 5.6. One can see a number of points

whose 95% confidence intervals do not contain zero, similar to the number observed

in figure 5.5. This can be considered to be a test of how sensitive the peak searching

algorithm is to statistical fluctuations; after correcting for detector periodicities and

other reconstruction inefficiencies there is no other explanation for troughs in the

data. None of the troughs which possess 95% confidence intervals that do not con-

tain zero are particularly significant. The exception is the trough at the endpoint,

with a branching ratio of (-6.7±1.4)×10−5; a 4.7 σ deviation from zero. This is very

close to what was approximated for the branching ratio of the peak resulting from

this endpoint resolution mismatch as it was described in Sec. 5.1.2.

To remove the trough produced by endpoint resolution mismatch from the con-

sideration of peaks, I added a trough to the fit that has all the characteristics of

the anticipated resolution mismatch. To accomplish this I used the measurement

of the resolution at the endpoint to generate the trough via the difference between

equation 5.1 using the endpoint resolution of the data (σdata) and the equation 5.1

using the endpoint resolution measured from the Monte Carlo (σMC). That is to say,

the trough was generated using the expression

Hdiff (p, cos θ) =
1

2

∂2Γdata

∂p∂ cos θ

∣

∣

∣

∣

p=52.4 MeV/c

×
(

Erf

(

(pmax − p) sin θ√
2σdata

)

− Erf

(

(pmax − p) sin θ√
2σMC

))

. (5.2)

The resulting distribution was added to equation 4.8. I have used the magnitude

of the normalised data spectrum at 52.4 MeV/c to provide and amplitude for the

difference of the kinematic endpoints of the data and the Monte Carlo. The exclu-

sion plot for the sum of the data sets at the kinematic endpoint of the muon decay

spectrum after including this correction is shown in Fig. 5.7. For the sake of com-

parison I have also included the exclusion plot for the same range of momenta where

the background is not corrected for the resolution difference at the endpoint. From

this result I can give a 95 % upper limit to the branching ratio near the kinematic

endpoint of 3.4×10−5.

This method assumes that the existence of a peak does not affect the measure-

ment of the characteristics of the endpoint, including the endpoint resolution. These

characteristics are used for the energy calibration of the Michel spectrum after re-



CHAPTER 5. ANALYSIS RESULTS AND DISCUSSION 52

construction. Direct investigation conducted by adding an isotropic peak to the

simulation of the Michel spectrum shows that the presence of a peak does not signif-

icantly affect the momentum resolution measured at the endpoint. For a peak with

a branching ratio of ∼6×10−5 added at or near the endpoint there is a change of

∼1.2±1.3 keV, representing a 1.4% change in the measured resolution at the end-

point.

This correction for the endpoint energy resolution mismatch also generates a

change in the average value of the Michel parameters. The largest change was in

ρ with an average value that was 0.00035 higher than the average value measured

without the correction for the endpoint resolution mismatch. This change is well

within the measured statistical error on the value of ρ. The other Michel parameters

also have positive correction to the average value resulting from the correction for

the endpoint resolution mismatch. However, the correction on the average value

of ξ and δ is less than the RMS of the distribution of values generated by the

successive measurements and much less than the measured statistical errors on these

parameters.
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Figure 5.7: Exclusion plot at the kinematic endpoint of the muon decay spectrum.

Plot at the left shows the exclusion plot with the correction for the endpoint resolu-

tion mismatch. The plot at the right shows the exclusion plot without the correction.
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Conclusions

The data analysed for the TWIST measurement of the Michel parameters can also

be used for the measurement of the exotic or forbidden processes. By fitting peaks,

using the Michel spectrum as a background, to the data collected by TWIST , I

have set model independent 95% upper limits onf the branching ratio of a two body

decay. For the purpose of this measurement I focused on the data collected in the

2002 data run period and used for the recently published determination of the Michel

parameters [9] [22]. This data consist of four sets, each data set containing ∼1.4×107

events after all the data cuts were applied. From each of these data sets I produced

a series of branching ratios for the process µ → e+X0 given that various masses for

the X0 boson. If all four data sets are included in the estimate the 95% confidence

upper limit on the branching ratio is BeX0 ≤ 2.0×10−5− 5.0×10−5. The maximum

branching ratio appears at higher momenta, near the kinematic endpoint of the

Michel spectrum.

I also obtained the branching ratios and accompanying confidence intervals for

peaks which have an intrinsic linear anisotropy. This resulted in a more restrictive

limit on the branching ratio for the decay for the case using positive anisotropy when

compared to the isotropic model. For similar reasons the limit on the branching ratio

of a peak showing negative anisotropy is less restrictive than the isotropic case. Using

the 2002 data set the 95% upper limit on the positive anisotropic decay between

2×10−5 and 3×10−5 depending on the momentum, while the 95% upper limit for the

branching ratio of the negative anisotropic decay is less than 6.0×10−5.

54
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These measurements compare favourably to previous measurements by Bryman

and Clifford and by Balke, of exotic decays involving massive bosons. Although a

95% confidence limit was chosen for this study to limit the number of two body decay

candidates, the measured limits are strong enough that they do not suffer by direct

comparison to the 90% limits described in these two papers. The 95% upper limit

of 1.0×10−4 is more than a factor of 6 improvement on the 90% upper limit set by

Bryman [3] and a factor of 3 improvement on the 90% upper limit given by Balke

[4].

Some caution is required when considering possible zero mass particles because

of a mismatch in the energy resolution at the endpoint between the TWIST data

and the corresponding Monte Carlo. We can apply a correction to the fit to account

for this mismatch. The validity of this correction depends on how the presence of a

peak affects the measurement of the energy calibration at the endpoint of the Michel

spectrum. However, if the peak is trusted to be small enough that is does not affect

the measurement of the energy resolution, then the branching ratio measured for a

boson approaching zero mass is 3.4×10−5 for the sum of data sets.

It should be pointed out that this is not the best limit now available for the

branching ration of a boson with zero mass as the branching ratio set by Jodidio et.al.

(BeX0 ≤ 2.6×10−6) is a much stronger limit than my limit. This is primarily because

the data used in the Jodidio measurement consisted of 1.8×107 events collected over

a phase space that was much smaller than the fiducial used in this measurement.

Specifically, the Jodidio measurement only measures positrons with angles at a very

narrow range (θ > arccos(.95)) downstream of the decay, with an effective momentum

range between 37 MeV/c and 68 MeV/c [12]. A particular consequence of this is

that the limit set by Jodidio et.al. is only sensitive to isotropic peaks and peaks

with positive (P > 1) anisotropy due to their very narrow angular acceptance. The

fact that this measurement was only made at the endpoint of the Michel spectrum

severely limits the background for an exotic decay, compared to a measurement made

away from the endpoint.

The limit on the branching ratio of a particle with zero mass can be used to set

limits on the gauge fields described in chapter 2. For the lepton flavour violating

interactions involving axions as described by Wilczek [11], this work sets a lower
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limit on the symmetry breaking scale; Fµe & 2.0× 109 GeV. Again, a much stronger

limit for this quantity was set by Jodidio; Fµe & 9.9 × 109 GeV. The upper limit of

the cutoff energy scale of the quintessence field can also be calculated. This does

constitute an improvement over the previous result as the limit set by Bi et al are

based on the branching ratio reported by Bryman. Using the numbers in [13], and

the limit I set for masses approaching zero, I calculate the cutoff scale Λ & 9×109

GeV.

These limits can be improved using available TWIST data. The cuts made on

the data for the purpose of this analysis are quite restrictive removing 95% of the

data recorded by the experiment to ensure the quality of the remaining data. Some

of these cuts may be relaxed to increase the available statistics. This will require a

detailed study beyond the scope of this thesis to understand how relaxing any of the

current cuts will affect the analysis. A second method of increasing the statistics of

this study and improving the limits is to introduce more data sets into the study.

The data sets used here represent a small fraction of the data taken in the 2002

running period. The rest of the data was used for the determination of systematic

effects. However, if the appropriate Monte Carlo data can be generated, this process

can be expanded to include these data sets. There are also data currently available

from the 2004 running period that may be used for this determination of the limit

on the µ → e+X0 branching ratio in the near future pending the conclusion of their

Michel parameter analyses. Thus, while this thesis does represent a factor three

improvement on the branching ratio over previous results, this does not represent

the best possible limit on lepton flavour violation available to TWIST.
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Appendix A

Analytical Estimate of Anisotropic

Effects

In this appendix I will quantify the difference in the statistical errors of a mono

energetic peak if the spectrum is integrated over angles before the fitting procedure

as opposed to maintaining all of the angular information of the spectrum throughout

the fitting process. The process of finding peaks within a distribution becomes much

easier integrating over angles before implementing a fitting procedure, as the func-

tional peak has no obvious angular behaviour, by construction. However, integrating

over angles before the fitting the spectrum fails to discriminate between the sought

after isotropic behaviour and say a peak isolated in momentum due to say a very

large localised fluctuation in the background.

I consider a simplified model in place of the a mono energetic decay on top of a

Michel decay background. For the case where I keep all of the angular information

throughout the fit, I consider the χ2

χ2
2D =

M
∑

i=1

N
∑

j=−N

(F (xi, cos θj) − G(xi, cos θj) − H(xi, cos θj))
2

σ2(xi, cos θj)
. (A.1)

On the other hand, if I integrate over the polar angle before the fit the χ2 becomes

60
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χ2
1D =

M
∑

i=1

(

N
∑

j=−N

F (xi, cos θj) −
N
∑

j=−N

G(xi, cos θj) −
N
∑

j=−N

H(xi, cos θj)

)2

N
∑

j=−N

σ2(xi, cos θj)

. (A.2)

In both of these expressions for χ2 the functions G(xi, cos θj) and H(xi, cos θj) rep-

resent the Michel spectrum and the isotropic two body exotic decay spectrum. The

function F (xi, cos θj), on the other hand represents the experimentally collected data.

Note that the sum of bins in cos θ are done over 2N bins rather than N bins. This

serves as a reminder that cos θ is symmetric about zero, and that the summation

starts at -1 rather than 0. Thus there are 2N bins in cos θ for cos θ between -1 and

1, and M bins in x for x between 0 and 1.

Since the actual representations of the decay spectra are complicated, I shall use

a simplified model for this exercise. For example a tractable model is,

G(xi, cos θj) =
B

2NM
(1 − xi cos θj) (A.3)

H(xi, cos θj) =
S

2N
δ(xi − x̄). (A.4)

Here I will define the function δ(xi − x̄) to be equal to one in the momentum bin

containing x̄, the mean momentum of of the exotic decay, and zero otherwise. The

parameters I am changing for the purpose of the fit are the signal amplitude S and

the background normalisation B.

One should keep in mind that I am assuming the act of collecting the data

F (xi, cos θj), to be a Poisson counting process. As such the standard error for a

given bin is

σ(xi, cos θj) =
√

F (xi, cos θj). (A.5)

When I consider the limiting case of S → 0, this definition will simplify things

greatly.

Now I may go through the motions of “fitting” the model. This case is linear in

the fit variable, allowing one to make use of a simple least squares fit via the Hessian
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[24];

H =







∂2χ2

∂S2

∂2χ2

∂S∂B
∂2χ2

∂S∂B

∂2χ2

∂B2






. (A.6)

The inverse of the Hessian generates an error matrix for the fit.

H−1 =
1

Det(H)







∂2χ2

∂B2
− ∂2χ2

∂S∂B

− ∂2χ2

∂S∂B

∂2χ2

∂S2






. (A.7)

Since I am principally interested in the error on the signal amplitude I can look to

the top left matrix element to produce the answer. That is to say,

σ2
S =

∂2χ2

∂B2

∂2χ2

∂S2

∂2χ2

∂B2
−
[

∂2χ2

∂S∂B

]2 (A.8)

If I introduce the notation fij = F (xi, cos θj), gij = G(xi, cos θj)/B, and hij =

H(xi, cos θj)/S, I can succinctly write down general expressions for the elements of

the Hessian for the case where all the angular information is maintained.
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Figure A.1: The toy model discussed for the background function G(xi, cos θj). Here

I used M = 2750, N = 50, and B = 25
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∂2χ2

∂S2
=

∑

ij

g2
ij

fij

(A.9)

∂2χ2

∂B2
=

∑

ij

h2
ij

fij

(A.10)

∂2χ2

∂S∂B
=

∑

ij

gijhij

fij

(A.11)

For the simple model described in equations A.3, in the limit of small S, I expect

that the background should approximate the “data” when the best fit has been

produced. Thus I have a situation that both simulates the expectation of an actual

exotic decay search and is analytically tractable. The results of applying such an

assumption and approximating the summations with integrations (for large N and

M) appear as follows.

∂2χ2

∂S2
=

M

Bx̄
(ln(1 + x̄) − ln(1 − x̄)) (A.12)

∂2χ2

∂B2
=

1

B
(A.13)

∂2χ2

∂S∂B
=

1

B
(A.14)

Finally, if I substitute these results into equation A.8, I get the standard error for

the signal in terms of the background amplitude.

σS =

√

√

√

√

B

M

x̄
ln

1 + x̄

1 − x̄
− 1

(A.15)

Thus the error of the angle independent case for this model demonstrates a depen-

dence on the mean momentum of the signal which depends strongly on the anisotropic

behaviour of the model.

Now, by way of contrast, I consider the angle integrated case. For this case, after

integration over cos θ, the matrix elements become

∂2χ2

∂S2
=

M

B
(A.16)

∂2χ2

∂B2
=

1

B
(A.17)

∂2χ2

∂S∂B
=

1

B
(A.18)
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resulting in a standard error of

σS =

√

B

M − 1
(A.19)

which is of course the error that one should expect to get for a standard deviation of

a distribution with uniform weights. This was to be expected since the background

distribution is uniform in momentum after integration over cos θ.

If we compare these two results directly we can see that the method with main-

tains all of the angular information throughout the fit does indeed produce a smaller

expected error, particularly at higher momenta. If I use M=2750 and assume a nor-

malises background the angle integrated case generates an error of 0.019. At zero

momentum the case using all of the angular information generates an error of 0.0135.

By changing the model of the signal slightly, I can show the impact of using

an anisotropic signal over the anisotropic background. Using the simple anisotropic

dependence described in equation 2.12, I will now redefine the model for the idealised

signal to be

H(xi, cos θj) =
S

2N
δ(xi − x̄)(1 − P cos θ) (A.20)

where P is between -1 and 1.

Continuing through with the calculation that I have outlined above, I find

∂2χ2

∂S2
=

M

Bx̄

(

ln

(

1 + x̄

1 − x̄

)(

1 +
P
x̄

)

− P
x̄

)

(A.21)

which results in a standard deviation of

σS =

√

√

√

√

√

B

M

x̄

(

1 +
P
x̄

)

ln

(

1 + x̄

1 − x̄

)

− 2MP
x̄

− 1

. (A.22)

The standard error on a peak with the described anisotropies are shown as a

function of the momentum in figure A.2. This shows that a peak with positive

anisotropy will generate a smaller standard deviations at high levels of background

anisotropy (with the opposite sign) as compared to the case where the fit peak has

no anisotropy. Alternatively, the standard deviation of the negative anisotropic peak

on the negative anisotropic background gets worse as the background anisotropy

increases. This is much as what one would expect qualitatively.
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Figure A.2: The standard variance (σ2) of the signal as a calculated fraction of

the background plotted against the reduced momentum. Here we assume that that

there are 2750 bins in momentum. Note that the anisotropy of the model is directly

proportional to the momentum


