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Abstract

The muon decay parameter delta characterizes momentum dependence of the parity-

violating muon decay asymmetry. A new measurement of delta has been performed

using the first physics data recorded by the TWIST experiment at TRIUMF. The

obtained value, δ = 0.74964±0.00066 (stat.) ±0.00112 (syst.), is consistent with the

Standard Model expectation δ = 3/4. This is the first determination of δ performed

using a blind analysis technique. Combined with other data, the measurement

sets new model-independent limits on effective right-handed couplings of the muon.

Improved limits on the product of another muon decay parameter, ξ, and the muon

polarization in pion decay, Pµ, are obtained in the form: 0.9960 < Pµξ ≤ ξ < 1.0040,

at 90% confidence level. Implications for left-right symmetric models are discussed.
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Chapter 1

Introduction

The Standard Model of particle physics [1, 2, 3] has been very successful in de-

scribing available experimental data. The only observed deviation from the original

theory is the recent observation of neutrino oscillations, but that can be easily ac-

commodated in the model’s framework and does not lead to a conceptual change.

Despite the many successes, the theory is generally believed to be incomplete, see

e.g. Section VII in [4]. Numerous extensions of the Standard Model have been

proposed, and experimental searches for New Physics are ongoing. The experimen-

tal efforts explore two complementary approaches. One type of experiment aims at

direct observation of new particles. These searches require the energy of the col-

lision to be high enough to produce the supposed heavy particle being looked for,

and their reach is limited by the capabilities of the accelerator. The other direction

of such research exploits contributions of hypothetical particles to known processes

through virtual (loop) effects. These experiments can be done at low energies. The

mass-scale reach of this kind of search is limited by the precision of the measurement

and by the theoretical precision of the calculation of the “known” processes.

Muon decay µ→ eνν̄, studied by TWIST (TRIUMF Weak Interaction Symme-

try Test experiment), is one of a few processes in particle physics that can be un-

ambiguously calculated with high accuracy in the framework of a theoretical model.

The purely leptonic nature of the decay eliminates many uncertainties due to the

internal structure of the particles. The strong interaction, which at present can not

be accurately evaluated from first principles, enters only through higher order radia-

tive corrections. The fractional hadronic contribution to the energy spectrum can

be estimated as 0.07 (α/π)2 ≈ 0.4× 10−6 [5], so any related uncertainty is negligible

for the current state of the field. On the other hand muons are easy to produce

1



in large quantities at an accelerator. That means high experimental statistics is

affordable, and precision experiments can be done to test theoretical predictions.

Thus the decay of a muon is an ideal low energy process with which to investigate

the Lorentz structure of the weak interaction.

1.1 The 4-fermion interaction formalism

An approach useful in searches for new physics is to start with a very general de-

scription of the process, then try to limit the possibilities. The most general, local,

derivative-free, Lorentz-invariant and lepton-number conserving four fermion inter-

action was introduced by Michel [6]. Using the notation of [7], which represents

particles by fields of definite chirality [8, 9, 10], the interaction matrix element can

be written in a “helicity projection form” as

M =
4GF√

2

∑

γ = S, V, T
ε, µ = R,L

gγ
εµ〈ēε|Γγ |(νe)n〉〈(ν̄µ)m|Γγ |µµ〉. (1.1)

Here GF is the Fermi coupling constant, while γ labels scalar, vector or tensor type

of interaction:

ΓS = 1, ΓV = γα, ΓT =
1√
2
σαβ .

In the last equation γα are the Dirac gamma matrices, and σαβ = i
2(γαγβ − γβγα).

The indices ε and µ indicate the chirality (handedness) of the spinors of the charged

leptons:

ψR,L =
1

2
(1 ± γ5)ψ

The chiralities n and m of the νe and ν̄µ spinors, respectively, are uniquely deter-

mined for given γ, ε and µ. The tensor term in (1.1) requires special attention. Due

to the identity γ5 σαβ = i
2 εαβλρ σ

λρ, the coupling constants gT
RR = gT

LL = 0. So

the general interaction (1.1) is defined by 10 complex parameters. Since a common

phase does not matter, the interaction is fully described by 19 real independent

coupling constants. The usual convention is to absorb the overall strength of the

interaction into GF , and normalize gγ
εµ [11] as:

1
4 |gS

RR|2 + 1
4 |gS

RL|2 + 1
4 |gS

LR|2 + 1
4 |gS

LL|2

+ |gV
RR|2 + |gV

RL|2 + |gV
LR|2 + |gV

LL|2

+ 3|gT
RL|2 + 3|gT

LR|2 = 1.

(1.2)
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Using (1.1) as a starting point, it is straightforward to calculate the differential

rate, in energy and angle, of positrons emitted in muon decay [12, 13, 14]:

d2Γ

dx d cos(θ)
=
mµ

4π3
W 4

eµG
2
F

√

x2 − x2
0

{

FIS(x) + Pµ cos(θ)FAS(x)
}

(1.3)

with

FIS(x) = x (1 − x) +
2

9
ρ (4x2 − 3x− x2

0) + η x0 (1 − x) + FRC
IS (x), (1.4)

FAS(x) =
1

3
ξ
√

x2 − x2
0

[

1 − x+
2

3
δ

(

4x− 3 +

(

√

1 − x2
0 − 1

))]

+ FRC
AS (x).

(1.5)

Here mµ is the muon mass, Weµ = (m2
µ + m2

e)/2mµ is the maximum energy of

the emitted positron, x = Ee/Weµ is the reduced positron energy, θ is the angle

between the positron momentum and an arbitrary direction ~z, x0 = me/Weµ is the

dimensionless electron mass, −1 ≤ Pµ ≤ 1 is the muon polarization with respect to

~z, and FRC
IS (x) and FRC

AS (x) are radiative corrections. The muon decay parameters

ρ, η, ξ, δ, are real numbers expressed through bilinear combinations of the coupling

constants gγ
εµ, and the indices IS and AS label the isotropic and anisotropic terms.

In the Standard Model muon decay is mediated by a W vector boson. It is

postulated that only left-handed fermionic fields interact weakly, that is, the degree

of parity violation is 100% (“V-A” interaction). This means that the SM corresponds

to only gV
LL being non zero, and leads to the following values of decay parameters

ρ =
3

4
, η = 0, ξ = 1, δ =

3

4
. (1.6)

Many extensions of the Standard Model give rise to other couplings that mod-

ify (1.6).

The contact interaction (1.1) is not renormalizable, so only a tree level result can

be obtained in a consistent way for the most general case. A calculation of radiative

corrections requires either restricting the interaction to a V,A type, or specifying

an underlying model leading to the effective interaction (1.1). Radiative corrections

to the spectrum are significant [15, 13, 16] and have been calculated under different

assumptions by many authors. Very detailed results computed within the Standard

Model are available [17, 18, 19, 20, 21].
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1.2 How general is the “general” matrix element?

This section1discusses assumptions underlying (1.1).

First of all note that (1.1) assumes that all the four particles involved in muon

decay are fermions. The two neutral particles, which are not observed in modern

experiments measuring the muon decay spectrum, may be of a different nature. For

example supersymmetric theories predict the decay of a muon into an electron and

two light scalar sneutrinos mediated by a wino. Such a decay cannot be described

accurately by a parameterization of the four-fermion interaction [7].

To understand what other assumptions are implied by (1.1), let us consider the

S-matrix element of the µ → eνν̄ decay. There are four particles involved, fully

described by 16 kinematic variables, the components of the four-momenta. These

variables obey 4 relations p2
i = m2

i . The conservation laws corresponding to 10

generators of the Poincaré group impose 10 additional constraints. Thus 16−4−10 =

2 independent invariants can be constructed from the four 4-momenta [22]. For

example s = (pµ − pνµ
)2 and t = (pe − pνe

)2. In the general case the S-matrix

element should have the form [22]

Mfi =
∑

n

fn(s, t)Fn (1.7)

where the functions of the kinematic invariants, fn, are called invariant amplitudes,

and the Fn are invariants which depend linearly on the wave amplitudes and 4-

momenta of all the particles concerned. Equation (1.7) may be understood to include

all radiative corrections.

The spin part of (1.7) is more general than (1.1). The linear momentum de-

pendence of Fn in some cases can be absorbed into fn by applying the equation of

motion, for example:

pα
2 〈ψ̄1|γα|ψ2〉〈ψ̄3|ψ4〉 = m2〈ψ̄1|ψ2〉〈ψ̄3|ψ4〉 (1.8)

But one can imagine a term for which this reduction will not work. For example,

replace p2 → p3 in (1.8). So, “derivative-free” is an assumption. This conclusion

seems to contradict a statement in [23], p.5, that “in the interaction term the 4 × 4

differential operators can be reduced to (constant) 4× 4 matrices.” However, a con-

tact interaction is assumed in [23] but not in the S-matrix approach. So for the spin
1Material in this section is based on my term write-up for the Quantum Field Theory—II course

at U of Alberta (2000).

4



part of the matrix element the assumption of “locality” of the effective interaction

makes it also “derivative-free”. Extensions of the four-fermion interaction that allow

for a linear momentum dependence of the spin part have been proposed [24, 25].

The invariant amplitudes fn(s, t) in (1.1) are just constants. To build fn we

need a mass parameter, M , so that fn(s, t) = f̃n(s̃, t̃), where f̃n is a function of

dimensionless variables s̃ = s/M2, t̃ = t/M2. Taylor expansion of the amplitude

should look like

fn(s, t) = fn(0, 0) +
∂f̃n

∂t̃

t

M2
+
∂f̃n

∂s̃

s

M2
+ . . . (1.9)

In the context of a gauge theory M is the mass of an intermediate boson, e.g. M =

MW � mµ, and replacement of fn(s, t) by a constant can be justified. Again, this

assumption is approximately equivalent to the assumption of a contact interaction:

a heavy mediator means a short-range force.

The interaction term (1.1) contains also the assumption that lepton number is

conserved. However, this assumption is not essential. Langacker and London [26]

have shown that a Hamiltonian allowing both lepton flavor violation and total lepton

number violation still leads to the same decay spectrum (1.3). Moreover, there

is a one-to-one correspondence between combinations of coupling constants of the

lepton-number non-conserving Hamiltonian and coupling constants in (1.1).

1.3 Tests for new physics

with the muon decay parameters

Early measurements of the muon decay spectrum helped to establish the current

theory of the electroweak interaction. The much more precise experimental data

available today are still in good agreement with the Standard Model. The best

measurement of the muon decay parameter δ before TWIST was [27] δ = 0.7486 ±
0.0026(stat) ± 0.0028(sys). In the rest of the chapter we will consider some con-

straints on new physics that can be imposed by a more precise measurement of

muon decay parameters. We will concentrate on parameters δ, a measurement of

which constitutes the subject of this thesis, and ξ, which was constrained by the

presented measurement of δ. At the end of this section we briefly mention some

models where δ differs from the SM value of 3/4, which have been excluded by other

experiments.
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1.3.1 Model-independent search for right-handed interactions

By re-ordering (1.2) we can write the fractions of decays where the muon interacts

µ-handedly and the positron ε-handedly as [7]

QRR =
1

4
|gS

RR|2 + |gV
RR|2 (1.10)

QLR =
1

4
|gS

LR|2 + |gV
LR|2 + 3|gT

LR|2 (1.11)

QRL =
1

4
|gS

RL|2 + |gV
RL|2 + 3|gT

RL|2 (1.12)

QLL =
1

4
|gS

LL|2 + |gV
LL|2 (1.13)

The fraction of muons decaying through a right-handed interaction Qµ
R = QRR+QLR

can be expressed through Michel parameters ξ and δ [14]:

Qµ
R =

1

2

{

1 +
1

3
ξ − 16

9
ξδ

}

, (1.14)

and thus is measurable by TWIST. The non-negative quantity Qµ
R is exactly zero in

the Standard Model. Any deviation from zero would indicate that the right-handed

muon component participates in the decay process through either a scalar, or vector,

or tensor, interaction.

1.3.2 Left-right symmetric models

In the Standard Model the charged weak current is purely V −A. A natural assump-

tion is that the V + A current is suppressed, but not exactly zero [28]. Left-right

symmetric models [29, 30, 31, 32, 33] extend the electroweak gauge group to include

at least SU(2)R and refer to a spontaneous symmetry breaking mechanism to ex-

plain parity violation. A general SU(2)L ×SU(2)R ×U(1) case is considered in [34].

The charged gauge boson fields are mixed:

WL = cos ζ W1 + sin ζ W2, (1.15)

WR = eiω(− sin ζ W1 + cos ζ W2), (1.16)

where WL, WR are the interaction eigenstates, W1, W2, are the mass eigenstates, ζ

is a mixing angle, and ω is a CP-violating phase.

The WR boson can contribute to muon decay only if the right-handed neutrinos

are light enough, so that the process is kinematically allowed. The muon decay

parameters affected in left-right symmetric models are ρ and ξ. Note that the
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spectrum shape (1.3)–(1.5) depends on the combination Pµξ, not on ξ itself. The

polarization of muons from charged pion decay, Pµ, in left-right symmetric models

is also different from unity. Introducing the notation

t =
g2
Rm

2
1

g2
Lm

2
2

, (1.17)

tθ =
g2
Rm

2
1 |V R

ud|
g2
Lm

2
2 |V L

ud|
, (1.18)

ζg =
gR

gL
ζ (1.19)

we can write [34]

ρ =
3

4
(1 − 2ζ2

g ), (1.20)

ξ = 1 − 2 (t2 + ζ2
g ), (1.21)

Pµ = 1 − 2 t2θ − 2 ζ2
g − 4 tθζg cos(α+ ω). (1.22)

Here gL, gR are the coupling constants, m1, m2 are the masses of W1 and W2,

V L,R
ud are the elements of the left- and right-handed quark mixing matrices, and

α = arg{V R
ud} is a CP violating phase. (V L

ud is chosen to be real.)

It follows from (1.21)–(1.22) that a measurement of Pµξ constrains both the

mass of the second charged gauge boson and the mixing angle.

1.3.3 Non-local tensor interaction

The ISTRA experiment observed a statistically significant deficit of π− → e−ν̄γ

events in the Eγ > 21 MeV, Ee > 70 MeV− 0.8Eγ region [35]. To explain it, a new

momentum transfer dependent tensor interaction has been suggested [24]. This idea

was discussed in the literature. In particular, [36] pointed out possible difficulties

the hypothesis may have explaining nuclear beta decay data. However it could not

be excluded [37]. Recently another experiment, PIBETA [38], also observed a deficit

of radiative pion decay events (using π+) in a similar kinematic region, renewing an

interest in the problem.

The suggested tensor interaction is non-local (momentum transfer dependent),

and is not included in Eq. (1.1). A new coupling constant, gT
RR, needs to be intro-

duced. The new interaction term, which should be added to (1.1), can be written

as:

−
√

2GF g
T
RR 〈ēR|σαλ|νe〉

4qαqβ
q2

〈ν̄µ|σβλ|µR〉 (1.23)
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This term contains only left-handed neutrinos and can interfere with the standard

decay mode. This interference leads to a higher experimental sensitivity to that

interaction.

There is a field theoretical extension of the Standard Model [39], which produces

the effective tensor interaction (1.23). In [40] a prediction for the spectrum of

positrons from muon decay is made based on the pion decay data. It is shown that

the muon decay parameter δ is very sensitive to the new interaction

δ ≈ 3

4

(

1 − 6 |gT
RR|2

)

, (1.24)

and with the suggested value gT
RR ≈ 0.013 almost a 10−3 deviation of δ from the

Standard Model value can be expected.

1.3.4 Historical models

The muon decay parameters have been discussed in the context of supersymmetric

theories with light sneutrinos [41, 27]. However LEP data at the Z pole [42, 43, 44,

45] and above [46, 47] constrain mν̃ & 30 . . . 94 GeV, depending on the assumptions.

Therefore muon decay with sneutrinos in the final state is kinematically forbidden.

An explanation of the LSND anomaly suggested by Babu and Pakvasa [48] in-

volves a lepton number violation decay µ+ → e+ + νe + νi (i = e, µ, τ). Since the

model requires ρ = δ ≈ 0.7485, it can be tested by TWIST. In 2003 the KARMEN

collaboration put a strict limit on the emission of νe from µ+ decay [49], excluding

the explanation at 90% confidence level.
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Chapter 2

Experimental setup

The TWIST experiment is designed to measure the spectrum of positrons from muon

decay in a wide range of energy and angle. A conceptual view of the spectrometer is

shown on Fig. 2.1. An important feature of the detector is its planar geometry [50],

which gives the possibility to correct for the average energy loss of decay positrons

with high precision in a data-driven way (chapter 6). The experiment uses a highly

polarized surface muon beam [51] from the M13 secondary beam line at TRIUMF.

The beam rate of about 2.5 × 103 muons per second is low enough to typically

have no more than one muon at a time in the detector. A muon is stopped in the

center of a symmetric stack of planar wire chambers and decays at rest. A 2 T

uniform magnetic field preserves the direction of the spin of the stopped muons.

The decay positron spirals in the magnetic field, leaving hits on the wires. The

hits are recorded by TDCs and analyzed offline to reconstruct the trajectory of

the particle and determine its energy and angle with respect to the magnetic field.

A detailed description of the TWIST apparatus is given in [52]. The rest of this

chapter summarizes different aspects of the experimental setup.

2.1 Muon beam

The TWIST detector is installed in the M13 secondary beam line [53] at the TRI-

UMF cyclotron. Fig. 2.2 shows the M13 layout. The cyclotron produces a 500 MeV

quasi-continuous proton beam, with 4 ns proton bunches striking a production tar-

get every 43 ns. During the 2002 TWIST data taking a beryllium production target

was used. Among the particles produced when beam protons interact with the target

are positive pions. The dominant decay mode π+ → µ+νµ results in the production

of muons, which can be transported through the M13 beam line to the experiment.
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Figure 2.1: A drawing of the TWIST detector [52].

Figure 2.2: M13 beam line layout [53]. B1 and B2 are the dipole, and Q1–Q7 are
the quadrupole magnets. The production target 1AT1 is seen by M13 at 135◦ with
respect to the primary proton beam, the bends in B1 and B2 are 60◦ each.
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The process π+ → µ+νµ is a two body decay, thus the momentum of the µ+ in

the rest frame of the π+ is fixed, pµ = 29.79 MeV/c. The relationship between the

muon spin and the muon momentum is also predicted by theory. In the Standard

Model the spin is antiparallel to the momentum. This relationship may be altered if

the muon scatters in a material, since the Coulomb scattering of the nonrelativistic

muons changes the momentum direction without influencing the spin. To preserve

high polarization of the muon beam such interactions should be minimized.

The surface muon beam technique [51] utilizes those pions that stop in the

production target, then decay at rest. Passage through a material causes muons

to also lose their momentum, and that loss, like the depolarization, is proportional

to the amount of material crossed. By tuning the beamline to select muons that

lost only a limited amount of momentum the depolarization can be controlled. The

muons accepted by the properly tuned beamline come from pions decaying in a

thin layer of material close to the surface of the target, with some “cloud” muon

contamination from pion decays in flight. The 43 ns time structure of the beam

makes possible the elimination of prompt particles produced at the time the protons

hit the target, which includes the “cloud” muons. Since the life time of π+ is 26 ns,

most of “surface” muons are emitted between the proton pulses. As discussed on

page 50, the measurement of δ requires high muon polarization, though a knowledge

of the precise value of the polarization is not important. For the 2002 TWIST physics

data taking the M13 beam line was tuned to the momentum 29.6 MeV/c, with a

momentum acceptance of 1.3%, resulting in a higher than 90% muon polarization

seen by the TWIST spectrometer.

At surface muon momenta the beam contains mostly positrons, muons, and a

small fraction of pions [54]. The positron and pion beam backgrounds are removed

by the reconstruction software (chapter 5). Data were also taken at 120 MeV/c for

calibration purposes. At this momentum the beam predominantly contains pions.

2.2 TWIST detector

2.2.1 Wire chambers

The TWIST apparatus uses wire chambers as the primary source of information.

Two types of chambers are employed in the detector: drift chambers (DC), and

proportional chambers (PC). They are similar in construction and use 15 µm sense
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Figure 2.3: Side view of the TWIST cradle [52].

wires. Their cathodes are made from nominally 6.35 µm thick doubly aluminized

Mylar foils. (Monte-Carlo simulation of the detector, chapter 4, uses a measured

mass density instead of the thickness, and also accounts for effect of stretching of

the foils on their thickness.) The pitch of the sense wires is 4 mm for the DCs and

2 mm for the PCs. The cathode-to-cathode distance is 4 mm in all cases. The

PCs use a CF4/isobutane gas mixture, the high drift velocity of which provides fast

response. One of the main functions of PCs in the analysis is to resolve tracks of

different charged particles in time. The DCs use dimethylether (DME) gas, which

gives high spatial resolution.

The wires are positioned at 45◦ to the vertical direction to reduce the gravita-

tional sag, therefore instead of the X and Y the chambers measure the U and V

coordinates as defined in Appendix 10.4. The wire chambers are assembled into

modules, each module having two or more wire planes. The volume between the

chambers is filled with a helium(97%)/nitrogen(3%) mixture. A side view of the

stack of wire chambers is shown on Fig. 2.3. The order, as seen by an incoming

muon, of the modules is: PCs (4 planes), the “dense stack” (8 DCs), seven modules

of “sparse stack” containing a pair of DCs each, the target module. The down-

stream (after the stopping target) arrangement mirrors the upstream. The DC and

PC planes are numbered sequentially, with the numbers increasing along the path of

a muon. DC 22 is the last drift chamber and PC 6 is the last proportional chamber
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Figure 2.4: Deviation of wires from their nominal positions. σ = 3.3 µm [52].

before the stopping target.

The target module consists of 4 PC planes. The central cathode foil in this

module also serves as the muon stopping target. During the 2002 data taking

this target was made from 125 µm Mylar, with conductive graphite coating on

both sides. (A high purity aluminum stopping target was not available at the

time.) Depolarizing interactions in the target rendered 2002 data unsuitable for an

improved measurement of Pµξ, but the extraction of δ does not require a precise

knowledge of the value of Pµ (page 50).

An important advantage of the TWIST detector is the small amount of material

in the tracking volume, leading to smaller effects from scattering and energy loss and

thus to smaller related uncertainties. The thickness of one pair of DCs is only 1·10−4

radiation lengths. Also, the positrons cross only about 25 mg/cm2 of material before

entering the tracking volume at the first DC, compared to 240 mg/cm2 before the

tracking volume in the previous measurement [27].

A very high mechanical precision has been achieved in the production of the

detector. The positions of the planes in the Z direction (along the beam) are defined

by precise Sitall ceramic spacers with a negligible coefficient of thermal expansion.

The cumulative error on the Z position is less than 50 µm over the whole length

of the detector [52]. The positions of wires within each plane are accurate to a

few microns, see Fig. 2.4. The relative alignment of different wire planes within
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the detector has been accomplished using 120 MeV/c pion tracks taken with the

spectrometer magnet off. The precision of this alignment is 5 µm (translations) and

0.01 degrees (rotations) [52].

2.2.2 Electronics and DAQ

A 195 µm thick scintillator mounted between the beam pipe and the upstream end

of the TWIST detector is used to provide a trigger signal during physics data taking.

The scintillator is read out by two PMTs and the trigger condition is a coincidence

of the two signals. The thinness of the scintillator makes the system less sensitive

to beam positrons, while muons, which have a higher density of energy loss at this

momentum, produce a strong signal. An essential feature of the trigger is that it

is unbiased: since the decay positron is not used by the trigger system, the trigger

efficiency is not correlated with the muon decay parameters.

An electric signal from a DC or PC wire is fed to a pre-amplifier mounted

inside the wire chamber module. The output of the pre-amplifier is connected to

a post-amplifier/discriminator in a CAMAC crate outside of the detector. The

discriminator circuit provides a time over threshold signal, which is recorded by a

multihit TDC with 0.5 ns time resolution. Upon receiving a trigger signal the TDC

analyzes its internal buffer, and any activity from 6 µs before to 10 µs after the

scintillator hit is read out via FASTBUS by a PowerPC. Time of the leading edge,

as well as the width (time over threshold) of the signal are recorded for each of up

to 8 hits per wire. Data are sent through an Ethernet connection to a dual 1GHz

Pentium Linux computer running a MIDAS [55] based data acquisition system [56],

which writes them to a disk buffer, then to SDLT tapes.

The gas gain of the drift chambers combined with the electronic amplification

leads to an effective threshold of 1.6 electrons collected from a track to produce a hit

[52]. The wire chambers operated at about 99.95% efficiency [52], without a single

dead or noisy channel during the 2002 data taking.

In addition to the TDC data, the DAQ logs hundreds of “slow control” variables.

They include voltages and currents for individual wire planes, gas flows through the

chambers, proton beam current, temperatures at numerous locations in the TWIST

detector, NMR measured magnetic fields of the spectrometer and beamline magnets,

currents of the beam line magnets, atmospheric pressure, etc.

14



2.2.3 Spectrometer magnet

The stack of wire chambers is placed inside of a 2 T superconducting solenoid. The

solenoid, together with the outside steel yoke, produces highly uniform magnetic field

in the tracking volume. The Bz component of the field was mapped, Fig. 2.5 shows

representative curves from the measurements. An OPERA-3d [58] simulation model

was tuned to the measured Bz. The OPERA-3d simulation produces the complete

~B(~r) field (as opposed to simply Bz(~r)) that is used by TWIST Monte-Carlo and

track reconstruction software. The simulated map reproduces the measured Bz to

better than 3 Gauss in the tracking region, giving the relative accuracy of 1.5×10−4.

2.2.4 Beam degraders

To center the distribution of muon stopping position in the target, there is the

possibility to fine tune the amount of material in the path of muons. This capability

is provided by a gas degrader, a 21.67 cm long volume installed between the vacuum

window of the beam pipe and the trigger scintillator. The gas degrader contains a

He/CO2 mixture. The fraction of CO2 can be varied from 0% to 100%, affecting

energy loss of muons in the degrader and their final stopping position.

It is also possible to install a plastic film in the path of muons. It was used to

shift the stopping distribution to the upstream end of the stack of wire chambers to

acquire the Monte-Carlo verification data (chapter 4).
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Figure 2.5: Bz vs z on the detector axis (top), and at the edge of the tracking volume
(bottom). Note the zoomed vertical scale. The limits of the tracking volume in z,
defined by the outermost DCs, are ±500 mm. The radius of the tracking volume is
defined by the size of the wire planes. Plots from [57].
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Chapter 3

TWIST data

With a quasi-continuous beam from the TRIUMF cyclotron, the definition of a “data

run” is arbitrary. In TWIST the DAQ was usually instructed to split data into files

of about 1.9 GB each. One such file is a “data run”. A typical run contains about

8.5 × 105 data events (triggers), and was acquired in about 7 minutes for nominal

surface muon beam. Data quality was monitored on per-run basis, and, if a problem

was detected, a complete run was excluded from the analysis.

A “data set” was defined as the amount of data required to achieve a statistical

precision of ∼ 10−3 on the muon decay parameters. While acquiring a data set,

all controllable running conditions were kept unchanged. (However variations in

e.g. atmospheric pressure could still introduce differences between runs within a

data set.) Set A became significantly smaller than other sets because of an off-line

rejection of bad runs. Table 3.1 summarizes data sets used for the extraction of δ

and systematic studies. Note that set A has much lower statistics than other data

sets. This is why set B was used in this work to quote typical numbers or show

example plots.
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Set name Dates Number
of runs

Fiducial
events,
millions

Comment

A Oct 8–9 165 7.9 nominal

B Nov 21–23 318 15.9 nominal

1.96 T Dec 2–4 338 16.5 1.96 T spectrometer field

2.04 T Dec 7–9 240 12.7 2.04 T spectrometer field

Cloud Nov 6–28 561 12.4 Cloud muon beam

DS Al Nov 29–30 160 7.7 Outside materials systematic

Slightly
Upstream

Oct 5–8 307 7.3 Stopping location systematic

Low rate Oct 13–20 338 17.9 Beam intensity systematic

High rate Oct 11–13 341 14.1 Beam intensity systematic

B2 + 10G Oct 20–21 348 15.4 Channel magnets systematic

Table 3.1: Data sets mentioned in the thesis. Fiducial region is defined in chapter 5.
All dates are in 2002.
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Chapter 4

Monte-Carlo simulation

TWIST uses a very detailed Monte-Carlo simulation program (MC), which is based

on the GEANT [59] package. It produced digitized output in the same format as

the DAQ, except that additional MC-specific information may be included. Pro-

duction of a large amount of Monte-Carlo events, matching TWIST data statistics

(chapter 3), was made possible by the use of WestGrid computing facility [60].

The geometrical description of the detector contains all the components of the

hardware with which a muon or a decay positron could possibly interact. Each

individual wire of the wire chambers is implemented in the software. The wire

planes are offset and rotated to their as-measured positions. A map of the magnetic

field (sections 2.2.3), which extends to the outside of the yoke, is used to propagate

charged particles in the simulation.

The initial kinematics of an event contains a muon, and possibly other muons

and/or beam positrons. The probability of having the pile-up particles is determined

by the specified muon and beam positron rates. The positions and directions of flight

of the muons are sampled from experimentally measured distributions {x, dx/dz}
and {y, dy/dz} and reproduce the observed position-angle correlations. The beam

particles, muons and positrons, are started outside of the yoke, and GEANT track-

ing propagates them through the fringe field of the spectrometer magnet into the

TWIST detector.

In the TWIST Monte-Carlo, unlike the standard GEANT3, the direction of the

muon spin is also tracked in the magnetic field. The initial spin direction is defined as

antiparallel to the muon momentum. Depolarizing interactions of the stopped muons

are simulated as a step function followed by an exponential relaxation. Setting the

initial polarization to −0.935 and the time constant to 5.8·10−5 s [61] reproduces the
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behavior of Pµ(t) in data as it is observed for t > 1 µs (this time limit is discussed

in chapter 5). A mismatch in polarization between data and Monte-Carlo would

not bias the value of δ in the analysis, but a large difference in the average Pµ

could require generating larger “derivative” (chapter 7) samples to achieve the same

statistical precision.

The energy loss of a muon is simulated by GEANT, and determines the stopping

position of the particle. The simulation of the muon stopping process has been val-

idated using special data runs with muons stopping in the middle of the upstream

part of the chamber stack. Because each of the chamber modules is much thin-

ner than the stopping target, the muon stopping distribution in these runs spreads

out over several wire chambers, and the distribution of the last (the most down-

stream) wire plane hit by muon can be used to observe the shape of the stopping

distribution. It has been shown [62] that the simulation matches the shape of the

stopping distribution well, but a constant offset equivalent to an about 86 µm of

additional plastic (Mylar) is required in Monte-Carlo to match the mean stopping

position of the muons. The peak of the stopping distribution within the target is

not directly observable in data, but the tails of the distribution are still accessible

through the last plane hit information. The following procedure was used to de-

termine the setting of the gas degrader for the nominal data taking. A histogram

of the last muon hit from Monte-Carlo, with the stopping distribution centered in

the target, was compared with similar histograms from data for different settings

of the gas degrader. The setting corresponding to the best match to the Monte-

Carlo distribution was used for the data taking. All nominal Monte-Carlo sets were

generated with the muon stopping distribution centered in the target. The energy

calibration procedure (chapter 6) compensates for any remaining differences in the

average muon stopping position.

A muon decay subroutine returns the energy and angle of the decay positron with

respect to the muon spin as dictated by the Michel parameters input. The theoretical

decay spectrum includes full O(α) radiative corrections with exact electron mass

dependence, as well as leading and next-to-leading logarithmic terms of O(α2),

leading logarithmic terms of O(α3), corrections for soft pairs, virtual pairs, and

an ad-hoc exponentiation [17, 18, 19, 20, 21]. The actual implementation of the

muon decay spectrum is separated from the rest of the Monte-Carlo code to make

possible a blind analysis, as is explained in section 7.4.
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The wire chamber response is simulated by randomly creating ionization clusters

along the path of a charged particle when it crosses a drift cell, calculating the drift

time of each cluster to the wire, and simulating the overlap of different clusters to

produce an above-the-threshold signal. The obtained time of the signal is smeared

to simulate electronics effects. The parameters of the method are derived from a

detailed GARFIELD [63] simulation study [64], and the “electronics” smearing is

tuned to TWIST data. The critical piece of information affecting the accuracy of

track reconstruction (chapter 5) is the time of the leading edge of DC chamber

signals. A good match of the simulated distribution to TWIST data has been

demonstrated [65].

Full GEANT physics interactions are enabled, so such processes as creation of

delta-electrons, or conversion of a bremsstrahlung photon into an electron-positron

pair, may create additional hits on the detector wires.

Interactions of decay positrons in detector materials distort the reconstructed

spectrum and can lead to biases in the values of the measured decay parameters.

TWIST relies on Monte-Carlo to compensate for these effects (chapter 7). Know-

ing the accuracy of the simulation of the interactions is important to determine

the corresponding systematic uncertainty (chapter 8). To verify a claim that in

GEANT3

the cross-sections of the electromagnetic processes are well reproduced

(within a few percent) from 10 keV up to 100 GeV, both for light (low

Z) and for heavy materials

([59], section PHYS001), data runs with muons stopped in the upstream end of the

detector have been taken. In these runs a decay positron emitted in the downstream

direction crosses the whole spectrometer. The upstream and downstream halves of

the detector can be used as two independent devices to measure the momentum and

angle of the positron before and after the central target, thus allowing an extraction

of the energy loss and angular scattering distributions from data. These distributions

can be compared with similar distributions obtained from a corresponding Monte-

Carlo simulation. The Monte-Carlo validation data were taken in 2003, with a high

purity aluminum stopping target of a known thickness. Thus the validation, unlike

the final result, is not affected by the uncertainty in the thickness of the graphite

coating on the Mylar stopping target used for the main 2002 data sets.
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Figure 4.1: Positron momentum loss in data (solid) and Monte-Carlo (empty mark-
ers). Top: linear vertical scale, bottom: logarithmic scale. The Monte-Carlo his-
togram is normalized to data. Mean values of the distributions are −126.9 keV/c
(data) and −122.9 keV/c (MC), the difference is 4.1 ± 1.3 keV/c. The RMS is
0.269 keV for data, 0.258 keV for MC. (The RMS in this study does not represent
TWIST momentum resolution, see text.) Analysis by Rob MacDonald.
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Figure 4.2: Positron angle change in data (solid) and Monte-Carlo (empty mark-
ers). The Monte-Carlo histogram is normalized to data. The mean angle change is
−2.9 mrad for data, −1.9 mrad for MC. The RMS is 16.4 mrad for data, 16.6 mrad
for the Monte-Carlo. (The RMS in this study does not represent TWIST angular
resolution, see text.) Analysis by Rob MacDonald.
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Fig. 4.1 shows an overlay of the momentum loss distributions for data and Monte-

Carlo. There ∆p = pdownstream − pupstream is the difference between the positron

momenta reconstructed by the two halves of the detector. In TWIST geometry mo-

mentum loss of a positron is proportional to 1/| cos(θ)| (see chapter 6); a factor of

| cos(θ)| is used in the study to compensate for a possible difference in the angular

distributions of the emitted positrons between data and Monte-Carlo while com-

paring the momentum losses. The difference between the data and the simulation

does not exceed 5% for both the average losses, and the widths of the distributions.

To separately look at “hard” processes, an arbitrary bound of 1 MeV/c was de-

fined. The tails of the distributions shown on Fig. 4.1 were integrated from −∞ to

−1.12 MeV/c (i.e. to 1 MeV/c below the average). The discrepancy in the fraction

of such “hard scatter” events was found to be 14%. Therefore the numbers we used

to estimate a systematic uncertainty due to the quality of GEANT simulation of

positron interactions are 14% for hard interactions, and 5% for intermediate and

soft interactions.

The distribution of ∆θ = θdownstream − θupstream is shown on Fig. 4.2. The width

of the distributions agrees to about 1%, but there is a noticeable shift in the mean

value of ∆θ. The interpretation of the mean value of this distribution is complicated.

Since there is more phase space at higher angles due to the sin θ factor, a naive

expectation is to observe a small positive shift in ∆θ. This has been confirmed by

a Monte-Carlo study [66], which demonstrated a ∼ 1 mrad positive bias. An effect

of a non-uniformity of the magnetic field is negligible [66]. However the distribution

of the reconstructed ∆θ has a negative mean for both data and Monte-Carlo. Thus

is should be attributed to biases in the track reconstruction, which affect the two

halves of a track in a different way. At least two causes for such biases are known.

In the GEANT validation studies positrons originate in PC 4, and no information

from PC 1–3 is available for pattern recognition (chapter 5) for the upstream part

of a track, but full information is available for the downstream part. Also, the track

fitting always assumes that a positron originates in the stopping target to determine

the sign of a time-of-flight correction to drift chamber hits. Therefore the correction

was applied with the wrong sign for the upstream parts, and with the correct sign

for the downstream parts of tracks in the validation study. Such biases are common

for the data and the simulation, and may shift the distributions to negative ∆θ. A

possible explanation for the difference in the central values between data Monte-
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Carlo is a misalignment of the detector to the magnetic field. Chapter 8 evaluates

a systematic uncertainty associated with such a misalignment.

It has to be noticed, that the widths of the distributions on Fig. 4.1 and Fig. 4.2

do not represent TWIST resolutions. The lack of information from PC1–3, and

the wrong time-of-flight correction mentioned above worsen the tracking quality.

Moreover, a positron in these studies goes through twice as much material as a

positron from a muon stopped in the target. Also, a track is reconstructed in the

two halves of the detector, so random fitting errors contribute twice.

25



26



Chapter 5

Spectrum reconstruction

The primary purpose of the spectrum reconstruction is to produce a 2-dimensional

spectrum of decay positrons in momentum and angle using information available

from the TWIST detector.

Real and simulated data are analyzed by the same reconstruction code in es-

sentially the same way. The only non-trivial difference in treating the two cases is

the crosstalk removal, which is discussed below. Technically the analysis was done

in two stages. The first stage, required a large amount of computations and was

performed at WestGrid [60]. It consisted of the following steps:

Crosstalk removal. A hit on a wire may induce a signal in a different channel

through electronics crosstalk. Most of crosstalk in TWIST is induced by highly

ionizing muons, therefore it does not affect decay positrons a microsecond later.

The effect has been studied in detail in the hardware by pulsing a channel

and observing the crosstalk signal on an oscilloscope. Crosstalk signals have

characteristics allowing for their identification and removal by software [67]:

there is a 5–65 ns delay from the generating pulse, and the width of a crosstalk

signal is much smaller than the width of a real signal.

An algorithm utilizing these characteristics removes crosstalk hits from real

data events before any other analysis is done. Because crosstalk is not simu-

lated by TWIST Monte-Carlo, and also because the width of chamber signals

in the simulation is not tuned to data, this algorithm is not invoked on Monte-

Carlo events.

Windowing. Chamber hits are grouped in time. Different groups correspond to

tracks from different particles.
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Classification. For each time window, characteristics of its chamber hits are used

to guess what process has occurred there [68]. For example, a decay positron

hits wire chambers in only one half of the detector, while a beam positron

crosses the whole detector. Based on the number and type of time windows in

an event, and the times of different windows, a classification code is assigned

to the event [68].

Pattern recognition. A cluster of consecutive wires hit in a plane determines only

one transverse coordinate of a passing track. Information from an orthogonal

pair of wire planes can be used to determine a “space point” on the track.

For a time window, the pattern recognition uses space points formed by the

hits belonging to the window to find parameters of possible helical tracks

passing through the points. It uses a combinatorial technique [69, 70] and can

find more than one track per window.

A feature of the arrangement of the wire chamber modules in the detector,

which can be seen on Fig. 2.3, is that the distances between the corresponding

planes of different pairs form a pattern: 5.2 cm, 7.2 cm, 5.2 cm, 7.2 cm, 5.2 cm,

7.2 cm, with only two independent distances, for the 7 modules closest to the

stopping target on either side. That means that a helix with the wavelength

L = 5.2 + 7.2 = 12.4 cm has only two distinct measurements of its transverse

position, so its radius can not be reconstructed using the space points [71, 72].

(In a projection along the detector axis, the 7 space points collapse into only

2 points on the circle—projection of the helix.)

The “dense stacks” of wire planes at the outer edges of the detector, along

with information from PC chambers, help to resolve the ambiguity. However

the worsening of the quality of reconstruction of such tracks still prompted

the introduction of a fiducial cut on pz, described below, to stay away from

the “magic wavelength” zone.

Wire center fits. Tracks are fit to the positions of hit wires in a time window. The

“narrow windows” technique [73] is used. To account for multiple scattering,

kinks at the positions of sparse stack chamber modules are allowed [74]. The

magnetic field map (section 2.2.3) is used. The resulting fit has sufficient

precision to resolve most left-right ambiguities.
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Track fitting The parameters of the tracks are refined using drift time information.

The necessary space-time relations are obtained from GARFIELD. Kinks and

magnetic field map are used.

No cuts on events were imposed at the first stage, and a summary of each event

was written out in a “ROOT tree” format [75]. The output data were subsequently

analyzed to select events and tracks to be used in the final spectrum. The following

cuts, illustrated on Fig. 5.1, were used.

TCAP. This is a cut on the time of flight of the trigger particle through the M13

beam line. It selects muons from stopped pions that decayed in between the

proton pulses from the cyclotron, and rejects “cloud” muons (section 2.1). The

purpose of the cut is to improve muon polarization. It also rejects triggers from

beam pions and prompt positrons.

The time of flight cut is only applied to data events. The Monte-Carlo does

not simulate the 43 ns time structure of the beam, and is instead produced

using measured parameters of the surface muon beam with the TCAP cut

applied.

Event Type. This cut uses the event classification code, and is a combination of

several requirements. The event must be triggered by a muon, and not a

beam positron. There must be only one identified muon. A unique decay time

window must be identified.

The decay must happen at least 1.05 µs after the trigger to ensure that DC hits

with the longest drift time ∼ 1 µs from the muon do not affect reconstruction

of the decay positron. Since the muon life time is about 2.2 µs, this requirement

alone rejects 38% of events.

Pile-up beam positrons are allowed, but they must be well separated in time

(at least 1.05 µs) from both the muon and the decay positron to avoid an

overlap of DC hits. Events with DC overlap constitute another major fraction

of all events rejected by the Event Type cut. It is important to note that

rejection of DC overlap events does not introduce a bias in the spectrum,

because the probability of an overlap does not depend on the momentum and

angle of the decay positron.

On the other hand, beam particles within ∼ 100 ns of the decay can not be
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Figure 5.1: Top: each bin contains the number of events before the cut; bottom:
the number of events rejected by cut. Solid markers: data, empty markers: MC.
Monte-Carlo is normalized to data by matching the number of accepted events.
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reliably separated by the classification code from such processes as creation

of delta-electrons or backscattering of the decay positron. Therefore all such

“PC overlap” events are kept at this stage.

Muon Z. Require that the event is consistent with the muon stopped in the central

target, i.e. require that the last chamber hit by the muon is PC 6.

Muon radius. Constrain muon stopping position in the transverse plane to r <

2.5 cm.

Decay Window Time. Require the decay to occur before 9 µs from the trigger,

so that long drift time hits are not cut off by the 10 µs DAQ limit.

N tracks Require at least one track candidate, as defined by the pattern recogni-

tion, in the decay window.

All the cuts above are essentially event-level cuts. An event may contain more

than one successfully reconstructed track. There are several reasons for multiple

tracks to be found. For example, due to a hard scatter a decay track may be split

into two helical parts, before and after the scatter, by the pattern recognition. That

would lead to two fit tracks for a single decay positron. Or a decay positron may

backscatter off material outside, re-enter the tracking volume, and produce a second

track, which may cross the whole detector. Such events may be indistinguishable

from a decay being overlapped by a beam positron particle. A genuine beam positron

overlap is yet another possibility to produce multiple tracks.

The challenge is to identify the “correct” track to be included in the spectrum. It

is handled as following [76]. A set of “decay candidate tracks” is created. Initially it

consists of all tracks identified in the decay window by the pattern recognition. Then

each of the candidates is subject to the cuts below. Failed candidates are eliminated

from the set. A corresponding event-level cut is defined as the requirement that the

set of decay candidates is not empty after the track cuts.

ierror Eliminate track candidates that did not produce a successful fit.

startstop Require that the ends of a fit track are on the “correct side” of the

detector, as determined by the classification. I.e. the track begins and ends

in the upstream half for upstream decay type events, in the downstream half

for downstream decay type events. Tracks that cross the central target are

always rejected here.

31



charge The direction of the winding of the helix must be consistent with a positive

particle that originated in the central target.

pair matches This piece of code essentially attempts to “glue” pieces of tracks

that were split in the reconstruction because of a hard scatter [76].

The cut is done in two stages. First, for each track among the decay candidates,

a set of “anti-tracks” is found as described below. An “anti-track” for a decay

candidate is a track in the decay window that, if successfully “glued” to the

candidate, would indicate that the candidate track should not be used.

Then the closest distance of approach1 (CDA) is calculated between the can-

didate and each of its anti-tracks. If CDA is less than 0.5 cm for at least one

anti-track, the candidate is rejected: probably the anti-track and the candidate

track belong to the same particle. The decision is done on purely geometrical

grounds: do the two tracks intersect? They can belong to the same particle

only if they do.

Selection of anti-tracks

The set of anti-tracks for a decay candidate is found through the following

procedure:

1. Start with all good fits in the decay window, but exclude the decay can-

didate itself, to form a set of anti-track candidates.

2. Exclude all tracks which overlap with the decay candidate in Z. If two

tracks have hits in the same DC plane, they can’t be from the same

particle. (Sharing of DC hits in not allowed in the track fitter. One DC

hit could belong to no more than one fit track.)

3. Exclude all tracks which are in the same half of the detector and farther

from the target than the decay candidate. We want to keep the decay

candidate because it is closer to the target, and therefore provides more

accurate information on the momentum and angle of the positron at the

decay point, even if the anti-track belongs to the same particle.

At this point an event is accepted and will produce an entry in the final spectrum.

However there is still no guarantee that a unique decay track has been identified.

1The distance used is the shortest distance between two tracks in the transverse plane, not in
3D.
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Figure 5.2: The mean number of extra decay track candidates before cut or select.
Solid markers: data, empty markers: MC.

In fact about 0.7% of events still contain more than one decay track candidate, as

can be seen on Fig. 5.2. The following algorithm [76] is used to decide among the

multiple candidates. These “selects”, unlike cuts, never reject all candidates, but

choose one.

dplane to target Find the DC plane closest to the central target, which is used

by a decay candidate. Eliminate all candidates that do not use a hit from that

plane, and therefore start farther from the target.

mu-e vertex The remaining . 10−4 fraction of multiple track cases is resolved

by the proximity of extrapolation of the positron tracks to the muon stopping

position. Since the error on the two muon coordinates is significantly different

because of the large scattering near its stopping position, an elliptical metric is

used: Rellipse = (Ue −Uµ)2 +(Ve −Vµ)2/σ2
vu, with σvu = 1.7 found empirically

by comparing RMS of muon-positron mismatch in the U and V directions.

The code is guaranteed to select only one decay track per event.

The momentum and cos(θ) values of the selected tracks represent an unbinned

decay spectrum. This “raw” spectrum was used to perform the energy calibration
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procedure, described in chapter 6. Then calibration results were applied to the

unbinned decay spectrum (chapter 6), and the corrected spectrum was filled into

a 2-dimensional histogram in momentum and cos(θ), which was further used to

perform a fit and extract values of the muon decay parameters (chapter 7). An

example of a reconstructed data spectrum is shown in Fig. 5.3.

The fiducial region used in the extraction of δ is defined by the following con-

straints:

p < 50 MeV/c The shape of the reconstructed spectrum at the end point is de-

fined by the detector resolution. On the other hand, in the bulk of a smooth

spectrum its distortion due to detector resolution is a second order effect. Ex-

cluding the end point region from the decay parameter fits (chapter 9) drasti-

cally reduces the sensitivity of the result to discrepancies between resolutions

for real and simulated data.

Another reason to stay away from the end point is to keep the decay parameter

fits statistically independent from the energy calibration fits (chapter 6).

|p � | > 13.7 MeV/c This cut eliminates tracks affected by the “magic wavelength”

problem, which is discussed above in this chapter.

p � < 38.5 MeV/c That requirement, together with the r < 2.5 cm cut on the

muon stopping position, insures that the decay positron track is radially con-

tained within the instrumented region of the detector.

0.50 < | cos θ| < 0.84 Events at high angles (small | cos(θ)|) are more affected by

multiple scattering and momentum struggling, leading to worse resolution.

They are also more difficult to reconstruct.

At small angles, it becomes difficult to determine the wavelength (pz) of the

tracks. Reconstruction biases observed in this region lead to a deviation of

the average energy loss prec − pMC from the 1/| cos(θ)| behavior required for

energy calibration (chapter 6).

The shape of the fiducial region in the momentum and cos(θ) plane can be seen

in the upper left panel of Figs. 9.1–9.5.

The average resolutions in the fiducial region are: 150 keV (FWHM) for momen-

tum, 0.015 rad (FWHM) for the θ angle, and 0.01 (FWHM) for cos(θ). Distributions
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of the differences of reconstructed and Monte-Carlo values for events reconstructed

within the fiducial are shown on Fig. 5.4.
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Figure 5.3: Reconstructed data spectrum from set B. a) In the momentum-cos(θ)
plane. b) Momentum spectrum for 0.50 < | cos(θ)| < 0.84, proportional to FIS(p).
c) Difference of momentum spectra for −0.84 < cos(θ) < −0.50 and 0.50 < cos(θ) <
0.84, proportional to FAS(p) d) cos(θ) spectrum for 20 < p < 50 MeV/c.
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Chapter 6

Energy calibration

The momentum of a decay positron measured by TWIST is affected by energy loss in

the detector materials. For a muon stopping distribution that is not centered in the

target the average momentum shift is different for upstream and downstream decays,

introducing an asymmetry in the spectrum. Also the average energy loss may be

different in data and the simulation even for a centered stopping distribution. The

momentum also scales with the ratio of the “true” magnetic field seen by the particle

to the field used by the reconstruction program. The ratio is unity for the Monte-

Carlo, but the field map is not a perfect representation of the real field. These effects

may lead to different spectrum distortions for real and simulated data, producing a

bias in the extracted values of the muon decay parameters. The goal of the energy

calibration procedure is to correct the reconstructed spectra to compensate for these

differences between the data and the simulation.

The calibration is done on physics data, using the same reconstructed spectrum

as for the extraction of the decay parameters. The calibration point is provided

by the sharp edge of the muon decay spectrum at the upper kinematic limit. Its

position is determined by the muon and the positron masses, and is therefore known.

The planar geometry of the TWIST spectrometer leads to an exact 1/| cos(θ)|
dependence of the amount of material traversed by a decay positron [50]. This

dependence is obvious for the flat stopping target, cathode foils, and the gas layers.

For the cylindrical wires, that dependence still applies on average, because the

probability of hitting a wire changes as 1/| cos(θ)|. In the 15–53 MeV/c TWIST

range of momenta, this translates into a linear dependence of the average energy loss

of the positron on 1/| cos(θ)|. That known dependence provides a way to disentangle

the effects of the magnetic field scale, which is angle-independent, and the energy
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loss. The position of the spectrum end point as a function of angle is given by

praw
edge(θ) =

(

1 +
β

p0

)(

p0 −
α

| cos(θ)|

)

. (6.1)

Here praw
edge(θ) is the end point position of the “raw” reconstructed spectrum, p0 ≈

52.828 MeV is the kinematic spectrum limit, and the constants α and β describe the

momentum loss and the field scale mismatch, respectively. To accommodate a non-

centered muon stopping distribution, the calibration procedure allows for different

energy loss parameters in the upstream and the downstream parts of the detector,

α = αu or α = αd. The difference of the upstream and downstream energy losses

αdiff = αu − αd is proportional to an offset of the muon stopping distribution from

the centered position, while the sum αsum = αu + αd does not depend on the muon

stopping position and is a measure of an effective thickness of the detector.

A determination of the calibration parameters β, αu, αd is not trivial. The chal-

lenge is to determine the end point position, praw
edge(θ), on reconstructed data, where

the sharp edge of the theoretical spectrum is smeared by the detector resolution.

A model function describing the spectrum shape at the end point is needed. This

complicated shape is a convolution of the muon decay spectrum and the detector

resolution, and a model function can not be expected to perfectly describe the data

distribution. Therefore the result of a fit depends on the range of momenta used.

An objective procedure establishing the range must be developed. Since the bias

of a fit depends on the relative position of the fit range with respect to the end

point, that procedure should be adaptive and produce the same relative position

for different absolute positions of the end point in the input data. It also has to

be noticed that fitting in the end point region by definition involves transition from

high to low per bin statistics, and care must be exercised in handling the statistical

issues properly.

A straightforward approach of fitting praw
edge(θ) independently for different angles,

with an adaptive choice of fit range, and then applying Eq. (6.1) to fit a straight

line through the resulting points, has been tried [77, 78]. Different end point model

functions were used, some including the effects of radiative corrections on the muon

decay spectrum [77]. An important result of these studies is a demonstration that the

end point indeed has a 1/| cos(θ)| dependence. However to stabilize the independent

end point fits, especially for small downstream angles where the statistics is low, a

large range of momenta ≈ 2 MeV/c needs to be used. It is more difficult to find
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Figure 6.1: A convolution of the cut-off linear function with a Gaussian gives the
shape on the right, which is used to fit the end point of the reconstructed spectrum.

a model function describing the data in a large range. Another issue is that the

shape of the data distribution becomes sensitive to the values of the muon decay

parameters if a large range of momenta is looked at, which is an undesirable effect.

Also, there is no single goodness of fit criteria in this approach. The goodness of

the final straight line fit does not include any information about goodness of the

individual end point fits.

To overcome these issues, a fitting procedure that uses a global fit to the 2-dimen-

sional momentum and cos(θ) reconstructed distribution has been developed [79].

The model function is constructed as following. The momentum dependence is

given by a convolution of a “slope and a step” shape

a (1 + by)Θ(y), where y = p− pedge (6.2)

with a Gaussian, illustrated on Fig. 6.1. Here Θ(y) is the Heaviside step function.

There are 4 parameters a, b, pedge, which defines the position of the end point, and

the Gaussian σ. The explicit form of the end point model is

1

2
(a+ by) erfc(

y√
2 σ)

) − bσ√
2π

exp(− y2

2σ2
). (6.3)

This one-dimensional function is used to describe the momentum dependence of the
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spectrum for a fixed angle θ. To obtain a 2-dimensional function, a dependence of

the parameters a, b, pedge and σ on θ is introduced. For pedge, the expected linear in

1/| cos(θ)| behavior from Eq. (6.1) is used, with different momentum loss parameters

αu and αd but common field scale β in the upstream and the downstream:

praw
edge(θ) =

(

1 +
β

p0

)(

p0 −
αuΘ(− cos(θ)) + αdΘ(cos(θ))

| cos(θ)|

)

. (6.4)

The muon decay spectrum is linear in cos(θ), therefore a linear parameterization

a(θ) = a0 + a1 cos(θ) (6.5)

is used for the normalization. For σ and b, suitable parametrizations were found
empirically by fitting Eq. (6.3) to the data distribution independently for different
angular bins, and observing the behavior of the fitted parameters as functions of
angle. That resulted into the following choice:

b(θ) = b0 + b1 cos(θ). (6.6)

σ(θ) =
σ0

| sin(θ)| , (6.7)

Equations (6.3)–(6.7) completely define the shape of the fitting function. They

contain 8 parameters: β, αu, αd, a0, a1, b0, b1, σ0, that are determined from a fit

to a reconstructed spectrum. Fig. 6.2 shows an energy calibration fit to data for

several angles.

The fit is done by minimizing −2 lnλ, where λ is the Poisson likelihood ratio [80]:

−2 ln λ = 2
N

∑

i=1

[

fi − ni + ni ln
ni

fi

]

. (6.8)

In (6.8) the summation runs over the bins of the histogram in the fit range, ni is the

number of entries in a bin, and fi is the expectation value for ni computed using

Eqs. (6.3)–(6.7). The advantage of the binned likelihood statistics −2 lnλ is that it

can be used not only to perform the fitting, but also to easily estimate a goodness

of the resulting fit [80]. In the large sample limit the minimum value of −2 lnλ is

distributed as χ2.

As is mentioned above, for a fixed angle the same momentum fit range relative

to the end point must be selected, so that no biases between data and Monte-Carlo

are introduced due to different absolute positions of end points. A series of tests,

described in Appendix 10.4, led to the following choice:

pedge(θ) − 0.75 MeV/c < p < pedge(θ) + 0.5σ(θ). (6.9)
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The fit is done iteratively. It uses its current estimate of pedge(θ) to fix the fit range

for the next iteration. There is no explicit limit on the number of iterations. Instead

each new 2-dimensional fit region Ωk is compared with all previously seen regions

Ω1, . . . ,Ωk−1. The stopping condition is Ωk = Ωk−l. Because a binned fit is used, a

rounding to histogram bin boundaries ensures that the number of possible fit regions

is finite, so the fit always converges. In practice it usually takes . 10 iterations.

It is common to have l > 1, in that case the average value of β over iterations

k − l + 1, . . . , k is computed, and the iteration with β closest to the average is

chosen as the final result. This is an arbitrary procedure, but the spread of the

results over the regions of the “convergence cycle” is always much smaller than the

statistical error of the fit.

Table 6.1 shows results of energy calibration fits for data sets and correspond-

ing Monte-Carlo sets used in the extraction of δ. A systematic difference in the

momentum resolution parameter σ0 at the end point is apparent from the numbers.

Spectrum β αu αd σ0

Set A −5.4 ± 6.2 67.7 ± 5.4 56.9 ± 5.4 76.0 ± 1.7
Set B 3.6 ± 5.5 74.0 ± 3.8 60.2 ± 3.8 74.1 ± 1.2
1.96 T 9.0 ± 5.4 79.0 ± 3.8 71.3 ± 3.8 76.8 ± 1.2
2.04 T 8.0 ± 6.0 75.9 ± 4.2 64.8 ± 4.2 73.3 ± 1.3

MC A −41.2 ± 4.5 61.4 ± 3.1 57.8 ± 3.1 69.3 ± 0.9
MC B −42.0 ± 4.5 60.3 ± 3.1 57.3 ± 3.1 69.1 ± 1.0
MC 1.96 T −7.1 ± 4.5 58.4 ± 3.2 56.0 ± 3.1 69.7 ± 1.0
MC 2.04 T −9.0 ± 4.5 56.8 ± 3.1 55.4 ± 3.1 68.7 ± 0.9

Table 6.1: Energy calibration results. All parameters are in keV/c. The large
deviations in β for two of the Monte-Carlos are because of a mistake in setting the
field scale in MC production. The energy calibration procedure corrects for this
mistake.

This discrepancy may arise for multiple reasons. For example, the spectrum re-

construction uses the same drift chamber space-time relations for data and Monte-

Carlo. These relations may be slightly different in the real detector, but the simula-

tion uses exactly the same drift tables as the reconstruction to generate Monte-Carlo

events. Therefore the reconstruction of Monte-Carlo can be expected to perform

better. This holds true for all other calibrations, such as alignment corrections,

electronic timing offsets T0, etc. The GEANT handling of positron interactions in

detector materials may also contribute to the effect. All the calibrations are counted
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Figure 6.2: The end point of the muon decay spectrum, and sections of the 2-
dimensional end point fit function for several angular slices. The smallest and the
largest angles in the upstream (top), and the downstream (bottom) are shown. Data
set B.

44



as sources of their corresponding systematic uncertainties, as well as an imperfection

of the GEANT simulation, chapter 8. However an effect of the momentum resolu-

tion discrepancy on the final result, regardless of its cause, has been estimated and

included in the final estimate of systematic uncertainty, chapter 8.

Typical correlation coefficients among fit parameters are shown in Table 6.2.

Since the parameters of interest β, αu and αd are highly correlated, their correlation

must be taken into account while estimating a systematic uncertainty of the result

due to energy calibration.

αu αd σ0 a0 a1 b0 b1
β 0.98 0.93 −0.14 −0.27 −0.09 −0.24 0.14
αu 0.92 −0.06 −0.12 −0.14 −0.11 0.00
αd −0.06 −0.12 0.13 −0.10 0.16
σ0 0.65 −0.01 0.58 −0.45
a0 0.03 0.96 −0.72
a1 0.02 0.59
b0 −0.75

Table 6.2: Correlation coefficients for energy calibration fit to set B.

An energy calibrated decay spectrum is obtained from the corresponding “raw”

spectrum by recomputing the reconstructed momentum for every event:

pec =
praw

1 + β/p0
+

α

| cos(θ)| (6.10)

The momentum is scaled by the magnetic field scale, and corrected for the energy

loss. α = αu for upstream decays, αd for downstream. p0 is defined after Eq. (6.1).

This calibration procedure brings the end point of the calibrated spectrum to its

“theoretical” value, pedge(θ) = p0. Checks by running energy calibration fits on

calibrated (instead of raw) spectra were done. As expected resulting β, αu, and αd

were consistent with zero.
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Chapter 7

Method for extraction of the
decay parameters

A reconstructed spectrum differs from a theoretical one because of finite experi-

mental resolution and because the interaction of the decay positrons with detector

materials changes the energy and angle of the particles.

Consider a parametrized theoretical probability distribution function ftheor(x
′;λ),

x′ ∈ Ω0, where λ are the parameters of the theory, and the x′ are the kinematic

variables of interest. The probability K(x, x′) dx of reconstructing an event that

occurred at x′ in a volume dx around some point x defines the response function

K, which describes the combined effect of the detector and the reconstruction. The

reconstructed spectrum frec(x;λ) can be written as

frec(x;λ) = b(x) +

∫

Ω0

K(x, x′) ftheor(x
′;λ) dx′, (7.1)

where b(x) is the background term.

Several approaches can be used to deduce the theory parameters λ from a mea-

sured spectrum, frec. One can try to solve (7.1) for ftheor. Deconvolution methods

are available [81], and were used by some experiments (e.g. [82]). However they are

not practical for TWIST where since x = {p, cos(θ))}, K is a function of 4 variables

p, cos(θ), p′, cos(θ′). It is difficult to estimate a 4-dimensional function accurately

from Monte-Carlo. In addition, a general feature of unfolding methods is a need for

a regularization parameter, which biases the result.

Another approach is to approximate (7.1) by an analytic expression, and use

the resulting frec(x;λ) to fit the data. Some terms in the approximate expression

usually need to be determined from simulations. This method is used by e.g. [27]. It
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would be difficult to find a suitable expression for the high precision representation

of the spectrum required by TWIST.

The rest of this chapter describes yet another technique, which was used by

TWIST. The idea is to parametrize the reconstructed spectrum in terms of λ, and

use that parameterization to fit the data. The method is similar to the one described

in [83]. The TWIST method differs from [83] in the fact that we fit only spectrum

shape parameters, but not the absolute normalization.

7.1 The fitting method

Appendix 10.4 derives an expansion of a reconstructed spectrum in the general

case. In TWIST background contamination is . 10−4 [84]. Moreover, the primary

background is simulated by TWIST Monte-Carlo. This means that there is a can-

cellation of the corresponding spectrum distortion, and the effect is negligible at the

10−3 level of precision. Therefore Eq. (C.22) can be simplified to

ni(λ+ ∆λ) =

[

1 −
m

∑

α=1

∆λα E−1να

]

ni(λ) +
m

∑

α=1

∆λα E−1να
i (7.2)

where we also have omitted the O(∆λ2) term. Here ni(λ+ ∆λ) are bin contents of

a normalized data histogram, ni(λ) are corresponding “base” Monte-Carlo values,

να
i are bins of a Monte-Carlo histogram for a “derivative” spectrum corresponding

to λα, and E−1 is a constant that can be determined from simulation. See Appendix

10.4 for details.

To extract values of the muon decay parameters, we minimize the

χ2 =
∑

Ω

(nData
i − nMC

i )2

σ2
i

(7.3)

where nData
i are the normalized contents of a data spectrum histogram, and nMC

i

are calculated according to (7.2) using Monte-Carlo “base” and “derivative” spectra.

The errors are assumed to be Gaussian, since the available statistics are sufficiently

high1. The error on the content of bin i of an input histogram is taken as the square

root of the number of entries in that bin, then the errors on different MC histograms

are combined following (7.2), and σ2
i is calculated as σ2

i = (σData
i )2 + (σMC

i )2.

1The statistics are always high for “data” and “base” spectra. Some derivative functions cross
zero in the fiducial, and around the crossings the count of events in a bin for the corresponding
derivative may be small. However the total error on the bin is dominated by “data” and “base”
distributions, so the smallness of a derivative count has no importance.
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The technique of extracting muon decay parameters through expansion (7.2)

takes into account effects of the detector (such as interactions of decay positrons

in the detector materials) and of the reconstruction (such as possible biases and

inefficiencies of the track fitting). No further corrections to the fit result are required.

An important advantage of the method is that effects of the reconstruction can-

cel exactly, since the same software is used to process real data and Monte-Carlo.

This fact allows for attributing all systematic effects to deficiencies of the simulation.

(Indeed, a perfect simulation would be reconstructed exactly as data by any recon-

struction software.) On the other hand, the TWIST detector is very thin, so that

the spectrum distortions it causes are small in the first place. Thus any discrepancy

of the simulation is multiplied by a small factor, and that helps to achieve a high

precision on the final result.

The fitting technique assumes independently reconstructed decays (the limit of

zero beam intensity). If there is more than one muon decay in an event, they are not

reconstructed independently, and, strictly speaking, the MC integration formulas

become invalid. Another interpretation is that reconstruction of one decay from an

event is affected by the presence of the second, so the response function K becomes

dependent on λ. A systematic error accounting for beam intensity effects has been

evaluated, see chapter 8.

It is beneficial to choose parameters λ so that F is linear in λ. Then ∂Ni

∂λ
does

not depend on λ, and the same Monte-Carlo derivative spectra can be used for any

base λ. Here Ni is the number of entries in bin i of the spectrum histogram, see

Appendix 10.4. This is why instead of λ = {ρ, Pµξ, δ} TWIST used λ = {ρ, z, w},
where z = Pµξ|Pµξδ=const, and w = Pµξδ. However even with the linear parametriza-

tion ∂2Ni

∂λ2 ≡ 0 the expansion (7.2) is still an approximation, because ∂2ni

∂λ2 6= 0 if the

normalization is affected by λ. This bias could be overcome by doing iterations:

generate MC spectra using λ = λ(n), do the fit, take the fit result as λ(n+1) and

repeat. In practice Michel parameters ρ, ξ, δ, were all already known to better than

10−2 precisions before the TWIST measurement, so that the O(λ2) contribution

could be brought down below the 10−4 level in the first fit, and no more iterations

were required.
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It is easy to show that the second order term in the expansion is

∆λα∆λβ

2

{

1

N

∂2Ni

∂λα∂λβ

− Ni

N2

∂2N

∂λα∂λβ

− 1

N2

∂N

∂λα

∂Ni

∂λβ
− 1

N2

∂N

∂λβ

∂Ni

∂λα
+

2Ni

N3

∂N

∂λα

∂N

∂λβ

}

(7.4)

The first two terms in the braces contain a second derivative of the rate and vanish

in the case of a linear parameterization. The three remaining terms all contain a first

derivative of the total number of reconstructed events. In the case of a symmetric re-

sponse function K(E, cos(θ), E ′, cos(θ)′) = K(E,− cos(θ), E ′,− cos(θ)′) derivatives

∂N/∂(Pµξ|Pµξδ) = ∂N/∂(Pµξδ) = 0, so that in fact the dependence (7.2) of ni on

Pµξ|Pµξδ and Pµξδ is exact without the O(∆λ2) term, and the only deviation comes

from (∆ρ)2.

7.2 Specifics of δ

Two ways of extracting δ from data were used by TWIST. A 2-dimensional spectrum

(1.3) provides the most detailed information, and can be fit to extract ρ, ξ, and δ

simultaneously. (The η parameter was fixed to the world average, because TWIST

could not provide a competitive constraint on it.) All systematics were evaluated,

and the final result extracted, using this approach.

From (1.3)–(1.5) it is clear that an “upstream minus downstream” spectrum,

f(p, cos(θ)) − f(p,− cos(θ)) ∝ FAS(p) cos(θ) (7.5)

is manifestly independent of ρ and η. Of course, for a reconstructed spectrum it is

true only to the degree that the response function is symmetric,

K(p, cos(θ), p′, cos(θ′)) = K(p,− cos(θ), p′,− cos(θ′)). (7.6)

Integrating out cos(θ) in (7.5) over a fiducial region, we obtain a 1-dimensional

momentum spectrum that can be fit with only 2 parameters, λ = {Pµξ|Pµξδ, Pµξδ}.
Such fits were employed to cross-check the result, chapter 9.

The previous measurement of δ [27] fitted instead the momentum dependence of

the asymmetry A(p) ∝ FAS(p)/FIS(p). However A(p) is a 1-dimensional spectrum,

which still depends on all the 4 muon decay parameters. A value of ρ had to be

assumed to extract δ in [27]. TWIST did not use asymmetry fits because of the

disadvantage of this method.
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Obviously δ could not be measured with unpolarized muons, because it only

enters in the angle-dependent part of Eq. (1.3). However, the knowledge of the

absolute value of muon polarization Pµ was not required to determine δ. Any

inadequacies of simulating muon depolarization in the beam line and the detector

could be absorbed into Pµξ, which is a free fit parameter. To achieve this, we need

to rewrite (1.5) replacing

FRC
AS (x) −→ ξFRC

AS (x). (7.7)

TWIST uses radiative corrections computed within the Standard Model, where

ξ = 1, therefore (7.7) does not introduce new assumptions. However after this

replacement Eq. (1.3) contains only a single parameter Pµξ, instead of separate Pµ

and ξ.

7.3 Tests of the fitter

TWIST implementation of the fitting technique (7.2)–(7.3) is based on the ROOT

rewrite [75] of the MINUIT package [85].

To test the program, about 3×1011 muon decays were sampled for “data” spectra

using ρ = 0.76, η = 0, Pµξ = 1, δ = 0.76, the same amount for “base” spectra using

ρ = 0.74, η = 0, Pµξ = 0.97, δ = 0.74, and 10% of that amount for each of the

ρ, η, Pµξ|Pµξδ, Pµξδ derivatives. (The derivative spectra do not depend on Michel

parameters.) Then different fits were done using these decays. The fiducial region

for the tests was defined as

20MeV/c < p < 50MeV/c, 0.54 < | cos(θ)| < 0.80. (7.8)

All histograms in the tests had 110 bins in momentum from 0 to 55MeV/c, and 100

bins in cos(θ) from -1 to 1. This is the same binning as used in the actual data

analysis.

For one test, the decays were split into samples of equal size. The size of the

sample, 4.8 × 107 decays, was chosen as to obtain approximately 107 “data” events

in the fiducial. Each of the “data” samples was fit to a different “base” sample using

a new set of “derivatives”, so that results of all the fits are statistically independent.

Tests were made in which all 4 parameters were fit as well as tests in which η was set

to zero so that only 3 parameters were fit. The fits were performed in the Pµξ|Pµξδ,

Pµξδ parametrization and the results were converted to the Pµξ, δ parametrization
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Figure 7.1: Distributions of: (top) fit probability, (middle) deviation of the param-
eter δ from the true value, (bottom) reported fit error on δ. Each entry in the
histograms comes from a statistically independent fit using the same number of
events.
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Parameter Mean bias × 104 Mean/(Error on mean)

ρ -0.026 -0.24
Pµξ -0.014 -0.06
δ +0.287 +1.45

Table 7.1: Absolute and relative biases for different fit parameters.

using formulas from Appendix 10.4. The distribution of fit probability (computed

from fit χ2 and the number of degrees of freedom) for the case of the 3 parameter

fits is shown on the top plot of Fig. 7.1. It is flat, as expected. The biases on all

fit parameters are consistent with zero, see table 7.1, and the estimates of fit errors

are close to the RMS of the corresponding distribution. As an example, the middle

and the bottom plots of Fig. 7.1 show distributions of δfit − δtrue, and of the error

σδ, respectively.

Another test looked at the performance of the fitter as a function of statistics.

The size of a “data” sample was varied from 106 to 213×106 events. (About 2×105

to 2 × 109 events in the fiducial.) For each sample size, 18 fits were performed

using the same size of the “base” sample, and 10% of that size for each of the four

derivatives. Each point on Fig. 7.2–7.4 aggregates 18 fits. Again, all of the fits in

this test were statistically independent. Fig. 7.2 demonstrates that fit errors, except

for the lowest tested statistics, scale as 1/
√
N . No statistically significant biases

were observed in the test, see Fig. 7.3. It can be seen from Fig. 7.4 that fit errors

are underestimated when the statistics is low. However they are consistent with the

spread of the fitted parameters when the statistics used is higher than about 106

events in the fiducial region. Our measurement used more than 107 data events per

typical fit, the lowest statistics fit had 0.79 × 107 events in its fiducial region. Thus

the fitting technique (7.2)–(7.3), the conversion formulas from Appendix 10.4, and

the software implementation of the fitter, have been completely validated for the

measurement.

7.4 Blind analysis

Blind analysis is an increasingly popular tool to avoid (subconscious) experimenter’s

bias when doing a physics measurement. There are subjective decisions to be made

in e.g. setting the cuts and rejecting “bad” data samples. Several different choices

may be equally valid and what gets actually used may be affected by the knowledge of
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Figure 7.2: Scaling of fit errors with statistics. Horizontal axis: the number of data
events in the fiducial region. Vertical axis: the mean value of reported fit error of
18 fits at the given statistics. Top to bottom: ρ, η, Pµξ, δ.
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Figure 7.3: Normalized biases as functions of statistics. Horizontal axis: the number
of data events in the fiducial region. Vertical axis: (Mean)/(Error on mean) of the
18 fits at the given statistics. Top to bottom: ρ, η, Pµξ, δ.
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Figure 7.5: Experimental determination of the Michel parameter ρ since 1950. The
solid line represents the V −A value ρ = 3/4,

what version gives a better agreement with the expected answer. Another possible

source of a bias is looking for software bugs, or additional sources of systematic

uncertainty when a result does not agree with the expectation, and not looking for

them as hard otherwise. Often considerable judgment is involved in estimating the

size of systematic uncertainties. Knowing how close a result is to an expected answer

may affect the quoted error. A good discussion of motivation for blind analysis, and

more examples, can be found in [86].

There is evidence for such bias in some particle physics measurements. For ex-

ample, “history plots” in [87] show non-statistical variations of several measured

quantities with time. In [23], there is the following remark about history of mea-

surements of the Michel parameter ρ, which is shown on Fig. 7.5:

The curve shows the improvement of the experiments, but perhaps also

the prejudice of the experimentalists.

The point is that human bias may introduce an unquantifiable systematic uncer-

tainty in the result of a measurement. It is desirable to avoid the possibility of

such a bias. This can be accomplished by doing analysis in a “blind” fashion, i.e.
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Figure 7.6: TWIST blind analysis scheme.

keeping the final result hidden till the analysis is essentially complete. The value

of a measurement does not contain any information about its correctness and is of

no use in performing the analysis, therefore hiding the answer does not impede the

work.

TWIST implementation of a blind analysis

Among our requirements for a blind analysis scheme were:

• Does not exclude any TWIST member from doing any part of the analysis.

• Convenient to use.

• Minimal modifications to the existing software.

• Hard to break.

A scheme of implementation satisfying these criteria is shown on Fig. 7.6. The idea

of the method is to blind the MC samples, not the fitter. It is clear from (7.2) that

the fitting method gives only deviations of the Michel parameters in data from the

values used to generate a base Monte-Carlo spectrum. Thus it was sufficient to hide
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the values of Michel parameters used for MC production. The secrecy was based

on using an asymmetric cryptography. A private-public key pair was produced, and

the private key locked up in a place not accessible by TWIST members.

The piece of software written specifically to make a blind analysis possible is

micheld, which is essentially a muon decay spectrum generator. The spectrum it

produces includes all radiative corrections described in chapter 4. The program runs

on a computer which is not controlled by the TWIST group, and none of TWIST

members could login there during the analysis period. (Symbolized by a “wall”

around micheld on Fig. 7.6.) micheld is a multi-threaded TCP/IP server, accepting

data and control requests from a network. An operator uses micheld ctl to instruct

micheld to produce a random set of Michel parameters. They are sampled uniformly

within the following limits:

ρ =
3

4
± 0.02, η = 0, Pµξ = 1 ± 0.03, δ =

3

4
± 0.02 (7.9)

A candidate set of values is tested for being physically allowed (the end point asym-

metry Pµξδ/ρ ≤ 1) before it is accepted. An accepted set of parameters is encrypted

using the public key, and the encryption result is stored in a database. By another

operator request an accepted set of Michel parameters is used to generate a series

of muon decay samples, which are written to disk.

During a Monte-Carlo production run, a GEANT process obtains a sample of muon

decays from the disk through micheld. Every time GEANT needs to decay a muon, it

uses the energy and angle (with respect to the spin of the muon) of the next decay

in the sample. Since different muon decay samples were produced with the same

(unknown) Michel parameter values, we had the possibility to study consistency

between different data sets, and to estimate systematics by fitting one MC sample

to another, as explained in chapter 8.

After the analysis was complete, the “black box” was opened, and the final values

of parameters were computed using the results of the fits and the revealed MC val-

ues. A small complication arises from the fact that the (Pµξ|Pµξδ, Pµξδ) → (Pµξ, δ)

conversion (Appendix 10.4) requires the knowledge of “true” MC parameters. That

was addressed by using the known approximate numbers Pµξ0 = 1, δ0 = 0.75, at

the “blind” stage. This approximation introduces an uncertainty of about 5% on

the deviation ∆δ from the fit, which translates into a 5% uncertainty on sensitivi-

ties of δ to different systematics (see chapter 8). This was adequate for doing the
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analysis. After opening the black box all data and systematics fits were re-run using

the revealed values of Pµξ0 and δ0 to get rid of the additional uncertainty. This

was a mechanical procedure not involving any judgment, so it did not violate the

philosophy of blind analysis.
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Chapter 8

Determination of systematic
uncertainties

To estimate the systematic uncertainty of the result, it is essential to account for

all sources of systematic effects. On the other hand, it is important to avoid double

counting, so that the same physical cause of a bias is not included more than once

in the estimate. Also, one has to distinguish evaluation of systematic uncertainties

from consistency checks [88]. The decision on what effects to consider and exactly

how to treat them involves judgment and is, to some degree, arbitrary. An important

feature of the present measurement is that it was done using a blind analysis scheme.

(See 7.4.) This means that a complete list of systematic effects, along with a method

to evaluate each of them, was fixed before “opening the black box” and revealing

the measured value of δ. Such an approach reduces the possibility that the obtained

estimate of systematic uncertainty is subjectively biased.

In our approach (chapter 7) all systematic effects can be attributed to imper-

fections of the Monte-Carlo. A simulation perfectly reproducing data would be

reconstructed exactly as data by any reconstruction software, thus the result of a fit

of data to Monte-Carlo would be unbiased. In other words, effects of reconstruction

cancel in the comparison of data to Monte-Carlo to the degree that the simulation

reproduces the data. Therefore the list of systematics does not include effects of the

reconstruction. This of course does not mean that the quality of the reconstruction

software is irrelevant: the sensitivity of the result to a given imperfection of the

simulation may be reduced by improving the reconstruction program.

For TWIST the possible sources of systematic uncertainties can be classified into

the following independent groups: positron interactions, spectrometer alignment,

chamber response, momentum calibration, and muon beam stability. Some of the
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specific effects within these groups bias the result in the same way for all the data

sets, while other effects are time dependent and may contribute differently to the

different data sets. The former effects only contribute to the uncertainty of the

result, while the time-dependent uncertainties also should be used in computing the

weighted average value of δ from the four data sets. (chapter 9.)

Most of the systematics effects were evaluated using the following technique:

evaluate the sensitivity R′ = dδ/da of the result δ to a systematic parameter a known

to a precision ±σa, and add R′σa quadratically to the systematic uncertainty [88].

To estimate R′, a data set set was taken or a Monte-Carlo set was generated under

a different condition atest 6= anominal. The reconstructed “test” spectrum is then fit

to the “nominal” one using (7.2)–(7.3). This expresses the change in the spectrum

shape due to the systematic effect in terms of changes in the Michel parameters.

The systematics estimate can therefore be written as

R′σa =
∆R

∆a
σa = (δtest − δnominal)

σa

(atest − anominal)
=

1

S
(δtest − δnominal) (8.1)

where we have introduced the scaling factor S = (atest − anominal)/σa.

The following subsections present in tabular format summaries of individual

systematics for each group, followed by a short explanation of each entry in the

table. If all systematic uncertainties R′σa are identical for all data sets used in the

measurement, a single column is used to present them, as in Tables 8.1, 8.2, 8.5.

Otherwise individual numbers for data sets A, B, 1.96 T, and 2.04 T are shown,

Tables 8.3, 8.4.

8.1 Spectrometer alignment

Table 8.1 summarizes alignment related systematic uncertainties, all of which are

data set independent because the TWIST detector was mechanically stable and its

parts did not move during the data taking [52].

Name 103 × ∆δ Scaling 103 ×R′σa

Translations 0.39 28 0.01

Rotations −4.33 39 −0.11

Z (longitudinal) −1.07 10 −0.11

B field to detector axis −1.86 3.1 −0.60

Total 0.62

Table 8.1: Alignment systematics.
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The translational alignment of the wire planes relative to each other is measured

using straight tracks produced by 120 MeV pions with the solenoid off. The

accuracy of the resulting alignment, σa, is 5 µm [52]. The test spectrum

was produced by analyzing the nominal data set B with a special alignment

file, which was produced by applying random shifts to the nominal alignment

corrections file. The resulting translational spread of the wire planes from

their nominal positions was 140 µm (RMS), giving the scaling factor S =

140 µm/5 µm = 28.

The rotational alignment systematic was determined in a similar way, using a

specially prepared rotational corrections file. The introduced angular spread

of 0.39◦ (RMS) yields a scaling factor of 39 compared to the 0.01◦ precision of

the nominal rotational alignment [52].

The Z (longitudinal) alignment of the wire planes is estimated to be accurate to

30µm from mechanical precision of the detector construction [52]. A Monte-

Carlo set was generated with Z positions of the planes offset by 300 µm (RMS)

and compared to a nominal MC set, thus producing a scaling factor of 10.

B field to detector axis. The nominal Monte-Carlo generation and data analysis

assume a perfect alignment of the detector axis to the coordinate system of

the magnetic field map. To produce the test spectrum, the field map was

rotated in GEANT by 0.25◦. The actual misalignment is estimated from data

by fitting (an approximation of) a helix that is not aligned to the detector

axis to the positron tracks, with the alignment angles being two additional

free parameters in the fit. The average misalignment found in this way is

0.08◦, so the scaling factor is 0.25◦/0.08◦ = 3.1.

8.2 Positron interactions

Energy smearing. This systematic accounts for any mismatch between data and

MC in the momentum resolution. This mismatch has been observed at the

end point (chapter 6). A test spectrum was produced by applying a Gaussian

smearing (σpt smear = 200 keV/c) to the transverse component of momentum,

pt, of reconstructed Monte-Carlo events. The same Monte-Carlo data analyzed

in the standard way, without any smearing, gave the reference spectrum.
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Name 103 × ∆δ Scaling 103 ×R′σa

Energy smearing 0.58 4 0.15

Multiple scattering 0.10 20 0.00

Hard and intermediate interactions 0.53

Detector materials −0.73 2 −0.36

Outside materials −2.09 70 −0.03

Total 0.66

Table 8.2: Positron interactions systematics.

For σpt smear = 50 keV/c the width of the end point, as determined by the

energy calibration procedure (chapter 6), agreed with data, σsmeared MC
EC ≈

σData
EC . Therefore the scaling factor used was 200/50=4.

Multiple scattering. The multiple scattering systematics addresses a potential

deficiency in the simulation of multiple scattering (chapter 4). The angle θ of

reconstructed Monte-Carlo events was smeared with a Gaussian using

σθ smear =
K(rad)

p(MeV/c)
√

1
| cos(θ)|

(8.2)

to produce a test spectrum. Here K is a parameter, while the functional

dependence on momentum and angle comes from a simplified formula for the

multiple scattering angle of a relativistic particle in matter. (See e.g. [87], page

245.) The 1
| cos(θ)| term is proportional to the amount of material traversed by

a particle in the planar TWIST geometry. For K = 1 rad, p = 30 MeV/c,

and cos(θ) = 0.7, Eq. (8.2) gives σθ smear ≈ 29 mrad. The size of the discrep-

ancy between data and Monte-Carlo was estimated as the bigger between the

differences in mean and RMS between data and Monte-Carlo in the valida-

tion studies (chapter 4). None of the differences exceeded 1.5 mrad [89], so a

scaling factor of 20 was chosen1.

Hard and intermediate interactions. The systematic uncertainty due to the

imperfect simulation of hard and intermediate interactions was estimated in

the following way [90]. A spectrum of reconstructed and thrown positron mo-

menta was prepared for events that lost less than 1 MeV/c in the detector

(according to Monte-Carlo information). A similar spectrum was generated

1This estimate of the scaling factor is not well justified. However the typical smearing angle of
29 mrad is larger then the angular resolution (chapter 5), and the “raw” effect of the smearing is
still small. This is why the obtained estimate of this systematics was never refined.
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Figure 8.1: Ratios of (reconstructed)/(thrown) momentum spectra for: ∆pMC ≤
1 MeV/c (left), ∆pMC > 1 MeV/c (right). Only events with 0.7 < | cos(θ)| < 0.84
are included in the spectra. (Plots from [90].)

for positrons that lost greater than 1 MeV/c. The 1 MeV/c number is an ar-

bitrary boundary between “intermediate” and “hard” interactions, consistent

with the boundary used in the Monte-Carlo validations (chapter 4). Ratios

of the (reconstructed)/(thrown) distributions, presented on Fig. 8.1, show the

distortions of the momentum spectra for the two classes of events.

The fractional yield changes over the range 25–50 MeV/c are

ys = (s1 − s2)/norm ≈ 0.0067 (left plot, intermediate interactions), (8.3)

yh = (h1 − h2)/norm ≈ 0.0070 (right plot, hard interactions). (8.4)

Here h1 ≈ 0.7458, h2 ≈ 0.7405, s1 ≈ 0.0153, s2 ≈ 0.0102 are the readings at

25 MeV/c and 50 MeV/c from the plots, and norm = 1
2(h1 +h2 +s1+s2). The

change of the Michel parameter ρ by 0.0010 leads to a fractional yield change

of 0.0018 over the same range. GEANT has been validated to 14% for hard

interactions and to 5% for intermediate interactions (chapter 4). Therefore

an uncertainty on ρ can be estimated as 0.0010
0.0018 × (0.05 × ys + 0.14 × yh).

To determine the effect on δ, we scale the uncertainty on ρ by the ratio of

∆δ/∆ρ ≈ 0.719 obtained in the “Detector materials” systematic below. The

final number is

0.719 × 0.0010

0.0018
× (0.05 × ys + 0.14 × yh) ≈ 0.00053 (8.5)

Detector materials. The nominal thickness of the graphite coating on each side
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of the stopping target is 10 µm. A test Monte-Carlo set was generated with

30 µm graphite coating and fit to a nominal 10 µm MC set. The setting of

the gas absorber in the test MC run was tuned to keep the muon stopping

distribution centered in the target, because the systematic effect related to

shifts of this distribution is accounted for separately. Since the thickness of

the graphite coating on each side of the stopping target is known to be between

5 µm and 20 µm [52], a scaling factor of (30 − 10)/(20 − 10) = 2 has been

applied.

Another output from this systematic study is the relative size of effects on

δ and ρ due to interactions of the positrons in detector materials, ∆δ/∆ρ ≈
0.000726/0.001010 ≈ 0.719, used above in the estimation of the uncertainty

due to hard and intermediate interactions.

Outside materials. Decay positrons after leaving the tracking volume may scatter

off the outside structures of the detector, re-enter the tracking volume, and

produce more hits, and consequently confuse track reconstruction. The biggest

source of backscatters is the upstream beam package, which holds the trigger

scintillator and the degraders (Fig. 2.1). There were no materials other than

air at the downstream end during the normal data taking.

To estimate the effect of an imperfect Monte-Carlo simulation of the positron

backscattering process, a special data set was taken with an aluminum plate

mounted outside of the downstream end of the detector. A fit of this data

set to a nominal data set produced the shift ∆δ = −2.09 × 10−3, shown in

Table 8.2.

Backscatters and beam particles overlapping in time with a decay positron

may not be distinguishable on an event by event basis. A study of backscat-

ter rates in data and Monte-Carlo [91] used the “PC time of flight” variable,

TPC = tu − td, where tu and td are the average times of hits in the 4 most

upstream and most downstream PCs. Accidental overlaps, such as those with

beam positrons, produce a flat background, while backscatters produce a peak

in the TPC distribution. This difference provides a way to measure the rate

of backscatters. The rate of backscatters from the downstream direction un-

der nominal conditions was demonstrated to be ≈ 0, and the scaling factor

was estimated as the ratio of the backscatter rate from the downstream alu-
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minum to the difference of the backscatter rates between the nominal data

and simulation [91]:

S =
NDdD − 0

|NGuS −NDuS |
≈ 70. (8.6)

Here NGuS is the number of backscatters seen in GEANT from the upstream

material under the “standard” conditions, NDuS is the number of backscatters

seen in data from the upstream material under the “standard” conditions,

and NDdD is the number of backscatters seen in data from the downstream

aluminum.

8.3 Chamber response

Name 103 × ∆δ Scaling 103 ×R′σa

A B 1.96 2.04

DC efficiency 0.27 50 0.01 0.01 0.01 0.01

PC efficiency 0.07 50 0.00 0.00 0.00 0.00

Dead zone PC 0.46 6 0.08 0.08 0.08 0.08

Dead zone DC 1.38 15 0.09 0.09 0.09 0.09

Up-down differences −0.19 4 −0.05 −0.05 −0.05 −0.05

HV variations 0.08 20 0.00 0.00 0.00 0.00

Temp, Pressure −2.66 −0.35 −0.35 −0.22 −0.35

Foil bulges −1.3 −0.52 −0.26 −0.52 −0.26

Crosstalk 0.01 10 0.00 0.00 0.00 0.00

T0 variations −1.83 10 −0.18 −0.18 −0.18 −0.18

Total 0.67 0.49 0.61 0.49

Table 8.3: Chamber response systematics.

DC efficiency. A special analysis of the nominal data set B deleted 5% of DC

hits before passing events through the standard reconstruction chain. Once

a hit was marked for deletion, all hits on the same wire within 700 ns were

also deleted, since they were likely to come from the same track. The obtained

Michel spectrum was fit against the standard analysis of the same set. The 5%

inefficiency that was introduced for this test corresponds to an exaggeration

factor of 50, because the actual efficiency of the DCs is about 99.9% [52].

PC efficiency. The effect of inefficiencies in the PCs was estimated in a similar way.

The test spectrum was produced from set B with a 5% artificial inefficiency

and a hit removal time interval of 50 ns. This systematics becomes negligible
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after applying the scaling factor of 50. Note that even the “raw” effect of 5%

PC inefficiency is small, because PCs are not used in the track fitting.

Dead zone PC. Muons slow down in the detector and become highly ionizing

before they stop. The large space charge they create in wire chambers may

“deaden” a section of wire for some time after a passage of a muon. The effect

is largest in PC 6, the chamber which is closest to the muon stopping target on

the upstream side, and is also observable in PC 5. The nominal Monte-Carlo

did not simulate this effect.

In a special study [92, 93], the dead zone effect was simulated by introducing

a 100% inefficiency along the wire around the point of the muon hit. The

rectangular in space inefficiency zone exponentially shrank in time. The initial

length of the zone was computed as the length of the projection of the muon

created space charge on the wire plus ∆L. A “realistic” simulation with the

parameters ∆L/2 = 0.24 cm and τheal = 2444 ns reproduced the “dip” in PC 6

efficiency around a muon hit that was observed in data reasonably well. An

“exaggerated” simulation used ∆L/2 = 5.00 cm and τheal = 3500 ns. Both

simulations used the same dead zone parameters for all PC planes.

To measure the sensitivity R′, the “exaggerated” MC was fit against a nominal

(no dead zone) simulation. The scaling factor was estimated using the ratio of

the number of PC positron hits lost due to the dead zone in the “exaggerated”

MC to the number lost in the “realistic” MC.

Dead zone DC. A similar “dead zone” effect is also expected in the DCs. Its

magnitude is smaller then in PC 6, because muons are less ionizing farther

from their stopping position. A DC dead zone is also seen at a smaller solid

angle from the stopping target than PC 5 or 6 dead zone, making the effect

harder to observe.

With no estimate of DC dead zone parameters available from data, the same

∆L/2 and τheal parameters as used in the PC study were applied to the DCs.

The scaling factor was estimated using the ratio of the number of DC positron

hits lost due to the dead zone in the “exaggerated” MC to the number lost in

the “realistic” MC.

Upstream-downstream differences. The average number of degrees of freedom
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of the track fits, 〈ndof〉, related to the number of drift chamber hits used

in the tracking, is different between data and Monte-Carlo. Among many

possible explanations (like the cathode foil bulges, see below) is an inaccuracy

of simulation of the drift chamber response in the corners of a drift cell. Special

analyses were run, which excluded “cell corner hits” with t > tmax from the

final track fitting. For a special analysis of Monte-Carlo, tmax = 400 ns was

used. In the special data analysis, the cut was tuned to match the average

〈ndof〉 of the data track fitting to that of the 400 ns Monte-Carlo analysis.

The tuning resulted in tmax = 522 ns.

The data spectrum produced in the special analysis was fit to a nominal analy-

sis of the same set, giving ∆δ = 0.000×10−3. A similar fit of special to nominal

Monte-Carlo spectra gave ∆δ = 0.193 × 10−3. The “raw” effect was taken as

the difference between the data and the Monte-Carlo fits: ∆δ = −0.193×10−3.

The effect of corner cell inefficiencies on the spectrum could be taken with a

scaling factor of 1. However while tuning the average 〈ndof〉 = 1
2 (〈ndof〉up +

〈ndof〉dn), the long drift time cuts exaggerated a difference in the asymmetry

Andof = (〈ndof〉up − 〈ndof〉dn)/(〈ndof〉up + 〈ndof〉dn) between data and Monte-

Carlo by about a factor of 15, from AData
ndof −AMC

ndof ∼ −0.16% for the nominal

analyses to 2–3% for the long drift time cut analyses. Since δ is an asymmetry

parameter, a scaling factor of 15 was another possible choice. It has been

decided to use a factor of 4 (the geometric mean) for this systematic.

HV variations. This systematic represents the effect of our imperfect knowledge

of high voltage on the wire chambers. The test spectrum was produced by

analyzing the nominal data set B using drift tables corresponding to 1850 V,

and comparing it to the same data set analyzed with the nominal, 1950 V,

drift tables. The scaling factor is 20 because the accuracy of the high voltage

if 5 V.

Temperature and pressure. This systematic uncertainty represents effects of vary-

ing gas density in the TWIST drift chambers, caused by variations of the

atmospheric pressure and outside temperature.

A special Monte-Carlo set was generated with settings corresponding to the

temperature of −10◦ C, instead of the nominal +20◦ C, and fit to a nominal

Monte-Carlo set, yielding ∆δ = −2.66 × 10−3. Scale factors were determined
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individually for each data set by comparing variations in the gas density that

occurred during data taking (available from the Slow Control DAQ records)

to the ≈ 10% density change in the −10◦ C test MC set. The scaling factors

are: 10 (set A), 10 (set B), 20 (1.96 T), 10 (2.04 T).

A change in the gas density also affects the muon stopping distribution. To

avoid double counting the stopping distribution effect, the latter systematic

number, 0.09 (discussed below), was linearly subtracted from scaled per-set

temperature and pressure estimates.

Foil bulges. During the data taking, the differential pressure between the drift

chambers and the enclosing He/N2 volume was not always stable. That led

to a movement of the cathode foils, affecting both the space-time relationship

of the drift chambers, and the average number of wires in a plane hit by a

track at a given angle. For example, in the nominal geometry with square

4 mm× 4 mm drift cells a track at θ < 45◦ can never hit more than 2 cells in

a plane. But if the cathode foils bulge out, extending the cell size along the

detector axis, the same track might produce more hits per plane.

To estimate the systematic uncertainty due to the foil movements, a special

Monte-Carlo set with the foils moved out by 500 µm was produced and fit to

a nominal MC set, giving ∆δ = −0.00130.

Several measurement of the differential pressure, done during the running

period, were correlated to an analysis variable derived from the most probable

value of χ2/ndof in the tracking and corrected for gas density effects [94]. That

variable was then used to set the following scaling factors for different data

sets: 2.5 (set A), 5 (set B), 2.5 (1.96 T), 5 (2.04 T).

Crosstalk. The test spectrum was produced by turning off the crosstalk removal

algorithm (page 27) and re-analyzing nominal set B. As expected, the effect is

very small since decay positrons are weakly ionizing and do not produce large

signals in the chambers, which could induce crosstalk. The removal algorithm

is estimated to be correct at least 90% of time, thus the scaling factor of 10.

T0 variations. Time offsets T0 for different wires were calibrated using 120 MeV

pion tracks with solenoid off. Results from a calibration run taken at the

beginning of the data taking period were used in the nominal data analysis.
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To estimate the systematic uncertainty associated with the calibrations, an-

other T0 run was taken at the end of the data taking period. The per-channel

differences in the extracted offsets between the two runs were multiplied by

10 (the scaling factor) and added to the nominal T0 values. The obtained T0

calibration file was used to analyze data set B to produce the test spectrum,

which was fit against the nominal set B spectrum, resulting in ∆δ = −0.00183.

8.4 Momentum calibration

Name 103 × ∆δ 103 ×R′σa

A B 1.96 2.04

End point fits 0.27 0.21 0.21 0.24

Field map 0.68 0.07 0.07 0.17 0.34

Total 0.28 0.22 0.27 0.42

Table 8.4: Momentum calibration systematics.

End point fits. Sensitivities of δ to the energy calibration parameters β, αu, and

αd (chapter 6) were determined by fitting a nominal spectrum to a spectrum

with the appropriate energy calibration constant offset by 100 keV/c. Co-

variance sub-matrices V for (β, αu, αd) from energy calibration fits to data

and to the corresponding MC spectrum were added, and the resulting matrix

multiplied with the vector of sensitivities A in the usual way [95]:

σ2 = AT (VData + VMC)A (8.7)

Field map. A mismatch between the measured Bz component of the nominal 2 T

spectrometer field and the OPERA field map was fit using the expression

∆Bz = c2z
2 + c3z

3 + crr [96]. This simple function describes the residuals to

within 1 G throughout the entire tracking region, and to within 0.5 G over

most of the tracking region. Nominal data set B was re-analyzed using a test

field map, which was prepared by adding 10 × ∆Bz to the nominal OPERA

map, and then fit against the standard analysis of the same data. Thus the

scaling factors are 10 for the 2 T sets A and B. Nominal analyses of the 1.96 T

and 2.04 T data sets were done using a scaled 2 T field map. Comparisons

of the scaled versions to the actual Bz measurements at those fields gave the

scaling factors of 2 for the 2.04 T data set, and -4 for the 1.96 T data set.
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8.5 Muon beam stability

Systematics related to the stability of muon beam parameters are “data set depen-

dent” by their nature. Since none contributed significantly to the final result, a

common estimate for each of the scaling factors based on the worst case data set

was used, instead of assigning individual scalings to different data sets.

Name 103 × ∆δ Scaling 103 ×R′σa

Stopping location 0.52 6 0.09

Beam intensity 0.26 6 0.04

Channel magnets −1.29 50 −0.03

Total 0.10

Table 8.5: Muon beam systematics.

Stopping location. The average position of muon stops in the stopping target

affects the amount of the target material seen by decay positrons. E.g. if

muons stop before reaching the center of the target, positrons going upstream

will be less affected by energy loss and multiple scattering than those going

downstream. The energy calibration procedure (chapter 6) compensates, to

first order, for differences in energy loss. The “stopping location” systematics

covers any remaining effects.

A special data set was taken with the muon stopping position displaced slightly

upstream (by introducing more CO2 in the gas degrader). That set was fit

to a nominal data set to measure the effect. The scaling factor was obtained

by comparing the ratio αdiff/αsum for the special set, −0.12, to the spread of

that ratio for other data sets, ∼ 0.02. Here αdiff and αsum are the energy

calibration variables, see chapter 6.

Beam intensity. The signal rate on the TWIST trigger counter was recorded dur-

ing the data taking. After rejection of bad runs, the spread of the average

trigger rate for different runs within the four nominal data sets was found to

be smaller than 0.6× 103 s−1. To measure sensitivities of the Michel parame-

ters to beam intensity, a low rate (1.1×103 s−1) and a high rate (4.7×103 s−1)

data set were taken and fit against each other. The exaggeration factor S in

this measurement is (4.7 − 1.1)/0.6 = 6.

Channel magnets. This systematic accounts primarily for instabilities in the B2
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Effect Uncertainty

Spectrometer alignment ±0.00062
Chamber response(ave) ±0.00056
Positron interactions ±0.00055
Stopping target thickness ±0.00037
Momentum calibration(ave) ±0.00030
Muon beam stability(ave) ±0.00010
Theoretical radiative corrections ±0.00010
Upstream/Downstream differences(ave) ±0.00005

Total ±0.00112

Table 8.6: Contributions to the systematic uncertainty for δ. For set-dependent
systematics the average values, denoted by (ave), are shown.

beamline dipole (Fig. 2.2), which directly affects the position of the muon beam

as it enters the TWIST spectrometer. The other dipole magnet, B1, defines

the momentum of the muons accepted by the channel, and its instabilities are

included in the “Stopping location” systematic.

The strength of the magnetic field in B2 was continuously monitored and was

stable to 0.2 G. A test data set was taken with B2 intentionally offset from

the nominal value by 10 G, giving the exaggeration factor of 50.

The deflection of beam particles by M13 quadrupole magnets is small com-

pared to the 60◦ bend by B2. Since the systematic effect of B2 is already

small, contributions of the quadrupoles to the systematic were neglected.

8.6 Summary of systematics

Table 8.6 shows a summary of the systematic uncertainties. The “stopping target

thickness” is shown separately from the rest of “positron interactions” uncertain-

ties, and “Upstream/Downstream differences” separately from the rest of “Chamber

response”, following [97].

An entry not discussed above is the uncertainty from theoretical radiative cor-

rections. Theoretical uncertainty on δ is estimated as 1 × 10−4 [18], if terms of up

to O(α2L2) are included in the spectrum. Here L = ln(m2
µ/m

2
e) ≈ 10.66, and α is

the fine structure constant. TWIST uses an even more precise spectrum description

(chapter 4), therefore this estimate provides a safe upper bound on the uncertainty.
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Chapter 9

Determination of decay
parameters

According to the philosophy of a blind analysis, the decision on which data sets to

use for the extraction of a final result had been made prior to “opening the box” and

revealing the physics result. Within each of the chosen data sets, an identification

and exclusion of bad runs was also done at the blind stage of analysis.

All fits used for the extraction of δ were done using 2-dimensional histograms

of reconstructed data and Monte-Carlo spectra in momentum and cos(θ), which

is the complete information available from the detector. The fits were done in the

linear parametrization {∆ρ,∆z,∆w}, where z = Pµξ|Pµξδ=const, and w = Pµξδ (Sec-

tion 7.1), then the results were converted to the usual {ρ, Pµξ, δ} parametrization

and the covariance matrices recomputed. The 3-parameter fits, unlike the fits to the

spectrum asymmetry A(p) = FAS(p)/FIS(p) (see Eqs. 1.3–1.5) used in the previous

measurement [27], do not require making any assumption regarding the value of ρ

in order to find δ. Sensitivity of δ to the value of η = −0.007 ± 0.013 [87] assumed

in MC production was checked and found negligible.

The measurement of the decay parameter δ uses the following four data sets:

set A, set B, 1.96 T, and 2.04 T. (See Table 3.1.) Table 9.1 shows results of fits

to the chosen data sets, computed using black box offset values ρ0 = 0.74766,

Pµξ0 = 1.0148, δ0 = 0.73645.

Correlation coefficients for set B are shown in Table. 9.2. Correlations for other

surface muon sets are very similar. The small (less than 10%) correlation between

ρ and δ confirms that in our approach the two parameters are independent.

The simulation describes the data well, as it is demonstrated by χ2/NDOF ≈
1 and the reasonable fit probabilities shown in Table 9.1. Figures 9.1–9.5 show
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Data Set δ ρ χ2 Probability

Set A 0.75087 ± 0.00156 ± 0.00073 0.75083 ± 0.00083 1924 0.27
Set B 0.74979 ± 0.00124 ± 0.00055 0.74911 ± 0.00066 1880 0.54
1.96 T 0.74918 ± 0.00124 ± 0.00067 0.74956 ± 0.00066 1987 0.05
2.04 T 0.74908 ± 0.00132 ± 0.00065 0.75203 ± 0.00071 1947 0.16

Table 9.1: Fit results. Set-dependent systematic uncertainties from Tables 8.3, 8.4,
8.5 are shown for δ after the statistical errors. Results for ρ are consistent with our
previous measurement [98]. Large depolarizing effects in the graphite coated Mylar
target (chapter 4) made the present data unsuitable for an improved measurement
of Pµξ, therefore this parameter is not shown. Each fit has 1887 degrees of freedom
(NDOF). The last column is the fit probability computed from χ2 and NDOF.

∆Pµξ|Pµξδ ∆Pµξδ

∆ρ 0.157 0.262
∆Pµξ|Pµξδ 0.422

∆Pµξ ∆δ

∆ρ 0.157 0.097
∆Pµξ −0.541

Table 9.2: Correlation coefficients. Left: in the original fit parametrization. Right:
converted to the usual muon decay parameters, according to formulas from Ap-
pendix 10.4.

residuals of the fits, providing more details on fit quality. On each of the figures,

the top left panel shows the normalized deviation of the best fit, (Data−Fit)/σ, for

each bin of the 2-dimensional fit histogram. The deviation of a bin is normalized to

its statistical error σ, and shown on a color scale. The two solid contours delimit

the fiducial region (page 34). It can be seen that most bins within the fiducial agree

to 1–2 σ.

The 2-dimensional fit and data histograms were independently projected onto

the momentum (top right), and cos(θ) (bottom left) axes, ignoring bins outside

of the fiducial region. Deviations between the obtained data and fit projections

are shown using the solid marker. The empty marker points on the top right plot

were obtained by removing the p < 50 MeV/c fiducial cut, and projecting the 2-

dimensional distributions from the extended region. Similarly the 0.50 < | cos(θ)| <
0.84 cut was removed to obtain points outside of the fiducial on the bottom left

panel. The bottom right panel shows a match between the data and the fit for the

FAS(p) distribution, which is the most relevant for δ. It was obtained by angle-

integrating the spectra separately in the upstream (cos(θ) < 0) and the downstream

(cos(θ) > 0) parts of the fiducial region, and computing the difference FAS(p) ∝
Upstream − Downstream. Most of the residuals for bins inside the fiducial region
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are within 2 σ off zero for all the views, and no pattern indicates a systematic

difference between the data and simulation.

A series of consistency checks were done. A fit to the Cloud set gave δ =

0.75245±0.00526 (stat). The fact that δ extracted from a data set with an opposite

(and small) muon polarization, P cloud
µ ∼ +0.25, is consistent with the value extracted

from surface muon data, with P surface
µ ∼ −1, demonstrates the absence of detector

asymmetries that would lead to different biases on δ for the two cases.

Another check involved generating a Monte-Carlo set with values of the muon

decay parameters determined from set B, and using the produced spectrum to do

another fit to set B. The fit yielded all deviations of the decay parameters consistent

with zero, as expected1.

Yet another check used a modified fitting procedure. Instead of doing a 3-

parameter fit to the 2-dimensional spectrum, a 1-dimensional distribution propor-

tional to FAS(p) was extracted from it. (See (1.3)–(1.5).) The shape of that distri-

bution is manifestly independent of ρ and η (provided the detector response function

is symmetric). This 1-dimensional distribution was fit using the Pµξ|Pµξδ and Pµξδ

parameters, and an alternative value of δ was extracted from that fit. A comparison

of the alternative values, δud, with the values extracted from fits to the 2-dimensional

(p, cos(θ)) distribution, δ2D, is shown in Table 9.3. The expected variance of the

difference σ2
diff for correlated data was computed as σ2

diff = |σ2
ud − σ2

2D|, assuming

that one of the estimators saturates the Minimum Variance Bound [88, 99]. It can

be seen from Table 9.3 that results of the alternative technique are highly consistent

with those given by the 3-parameter fits.

We compute the central value of δ as a weighted average [87], using for the

weights a quadratic sum of statistical and set-dependent systematic uncertainties

from Table 9.1. In the calculation of the final systematic uncertainty we do not

assume that it shrinks in the combined measurement, and quadratically add set-

independent and average values of set-dependent systematics as shown in Table 8.6.

1That test failed for δ in the first round of TWIST analysis. The problem was traced to a failure
of implementing Eq. (7.7) in the spectrum generator. Since ρ is decoupled from the asymmetry
parameters, this flaw had no impact on ρ, and its value was published [98]. On the other hand, it
introduced an additional systematic uncertainty on δ, dependent on the difference of the average
muon depolarization in data and Monte-Carlo. This systematics was estimated to be � 0.001.
This large value necessitated a reanalysis, with the generator fixed. A new black box was created,
and a second round of analysis performed, which is presented in this work. Because the effect
of the mistake on δ was large, we did not know the value of δ, so the analysis was still blind.
Other changes between [98] and this analysis are improvements in track selection (chapter 5) and
rotational alignment of the drift chambers.
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Data Set δud − δ2D σdiff (δud − δ2D)/σdiff

Set A 0.000218 0.000293 0.74
Set B −0.000006 0.000230 −0.03
1.96 T 0.000168 0.000228 0.74
2.04 T −0.000007 0.000239 −0.03
Cloud 0.000131 0.000711 0.18

Table 9.3: Per-set differences between δud extracted from a fit to the “upstream
minus downstream” distribution FAS(p), and δ2D from a 3-parameter fit to the
(p, cos(θ)) spectrum.

The final result is

δ = 0.74964 ± 0.00066 (stat.) ± 0.00112 (syst.) (9.1)
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Figure 9.1: Fit residuals for set A. Top left: color-coded residuals in the cos(θ)
vs momentum plane. Top right: projection on the momentum axis. Bottom left:
projection on the cos(θ) axis. Bottom right: projection of the “upstream minus
downstream” distribution. Solid markers are for points inside the fiducial region,
empty markers for outside. The contours delimit the fiducial region. See text.
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Figure 9.2: Fit residuals for set B. Top left: color-coded residuals in the cos(θ)
vs momentum plane. Top right: projection on the momentum axis. Bottom left:
projection on the cos(θ) axis. Bottom right: projection of the “upstream minus
downstream” distribution. Solid markers are for points inside the fiducial region,
empty markers for outside. The contours delimit the fiducial region. See text.
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Figure 9.3: Fit residuals for set 1.96 T. Top left: color-coded residuals in the cos(θ)
vs momentum plane. Top right: projection on the momentum axis. Bottom left:
projection on the cos(θ) axis. Bottom right: projection of the “upstream minus
downstream” distribution. Solid markers are for points inside the fiducial region,
empty markers for outside. The contours delimit the fiducial region. See text.
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Figure 9.4: Fit residuals for set 2.04 T. Top left: color-coded residuals in the cos(θ)
vs momentum plane. Top right: projection on the momentum axis. Bottom left:
projection on the cos(θ) axis. Bottom right: projection of the “upstream minus
downstream” distribution. Solid markers are for points inside the fiducial region,
empty markers for outside. The contours delimit the fiducial region. See text.
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Figure 9.5: Fit residuals for cloud muon set. Top left: color-coded residuals in the
cos(θ) vs momentum plane. Top right: projection on the momentum axis. Bottom
left: projection on the cos(θ) axis. Bottom right: projection of the “upstream minus
downstream” distribution. Solid markers are for points inside the fiducial region,
empty markers for outside. The contours delimit the fiducial region. See text.
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Chapter 10

Conclusion

The TWIST result for δ, Eq. (9.1), is consistent with the Standard Model prediction

δ = 3
4 . It is also consistent with the previous best measurement [27, 87] δ =

0.7486 ± 0.0026 (stat.) ± 0.0028 (syst.). TWIST result Eq. (9.1) can be rewritten

with the errors combined:

δ = 0.74964 ± 0.00130. (10.1)

Compared to the combined error of [27], the TWIST result is an improvement of a

factor of 2.9. Because the measured value is consistent with the Standard Model, it

places new limits on possible deviations from the theory.

10.1 Model-independent limits
on right-handed muon interactions

Model-independent limits on right-handed couplings of the muon can be obtained

using Eq. (10.1), the TWIST result [98]

ρ = 0.75080 ± 0.00105, (10.2)

and a value of Pµξδ/ρ. Using [100, 101, 102] we get1

Pµξδ/ρ = 0.99787 ± 0.00082. (10.3)

1No erratum correcting a mistake in µ − e scattering [100] has been published for [101]. In
[102], page 103, the value of Pµξδ/ρ = 0.9984 ± 0.0016 ± 0.0016 is quoted. Removing an upward
correction factor of 1.0007 (page 86) for depolarization in µ − e scattering, we obtain Pµξδ/ρ =
0.9977± 0.0016± 0.0016. The latter number, combined with Pµξδ/ρ = 0.99790± 0.00046± 0.00075
from [100], gives the value quoted in the text. Because [100, 101, 102] quote their final results not
as values but only as lower limits on Pµξδ/ρ, Eq. (10.3) can only be used to produce limits on, but
not values of, other parameters.
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We can transform Eq. (1.14)

Qµ
R =

1

2

{

1 +
1

3
ξ − 16

9
ξδ

}

(10.4)

=
1

2

{

1 − ξ

(

16

9
δ − 1

3

)}

. (10.5)

Since δ ≈ 3/4, 16 δ/9 − 1/3 > 0. Also Pµ ≤ 1, therefore

Qµ
R ≤ 1

2

{

1 − Pµξ

(

16

9
δ − 1

3

)}

(10.6)

=
1

2

{

1 − (Pµξδ/ρ) ρ

(

16

9
− 1

3δ

)}

. (10.7)

Substituting the values of Pµξδ/ρ, ρ, and δ

Qµ
R = 0.00061 ± 0.00086. (10.8)

Because mathematically Qµ
R ≥ 0, we convert Eq. (10.8) to a 1-sided limit:

Qµ
R < 0.00184, 90% confidence level. (10.9)

This is our new limit on the fraction of muons decaying through right-handed inter-

actions.

Using Eqs. (1.10)–(1.13) and (10.9), we can put new limits on interactions that

couple right-handed muons to left-handed electrons. These limits are summarized

in Table 10.1

Coupling TWIST limit Previous limit from [87]

|gS
LR| 0.086 0.125

|gV
LR| 0.043 0.060

|gT
LR| 0.025 0.036

Table 10.1: 90% confidence level upper limits on couplings between right-handed
muons and left-handed electrons.

10.2 Limits on Pµξ

From the same inputs of δ, ρ, and Pµξδ/ρ, as in the previous section, it is possible to

place new limits on Pµξ. Using (10.3), (10.2), and (10.1), we obtain an intermediate

result in the form Pµξ = vL ± σL, which is not a “value”, but can be used to set
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a lower limit on Pµξ (see footnote on page 85). Upper limits on ξ are imposed by

ξδ/ρ ≤ 1 and Qµ
R ≥ 0, with the latter being the strongest. From Qµ

R = 0 we get

ξ = vU ± σU , and can use it to compute a limit. Because Pµξ ≤ ξ, the final result

should be in the form L < Pµξ ≤ ξ < U . This makes L and U weaker than the

corresponding one-sided limits would be. We defined the lower, L, and the upper,

U , bounds, as L = vL − kσL, U = vU + kσU , imposing the same sigma multipliers

at both ends. Demanding that the sum of integrals of the normal distributions

Gauss(vL, σL) and Gauss(vU , σU ) between L and U is 2 × 0.9, we obtain a “90%

confidence interval”

0.9960 < Pµξ ≤ ξ < 1.0040. (10.10)

(In fact the two integrals are 0.8975 (L), and 0.9025 (U), so that each of the limits

is very close to 90%.)

10.3 Limits on left-right symmetric models

The lower limit on Pµξ (10.10) can be used to put limits on mass of the second

charged gauge boson and its mixing angle with the Standard Model W in left-right

symmetric theories, see (1.21)–(1.22).

Manifest left-right symmetric models assume that gL = gR, the right-handed

CKM matrix coincides with the known left-handed CKM matrix, and there is no

CP violation in the mixing: ω = 0. (Notation from section 1.3.2.) Pseudo-manifest

models allow CP violation, but require V L = (V R)∗ and gL = gR. See pp. 377–379

in [87] for a recent review.

Some of the existing constraints in the mass—mixing angle plane for the manifest

case are shown on Fig. 10.1. It can be seen that TWIST constraints indeed provide

an improvement over previous muon decay data, including a dedicated search [100].

The new limit on WR mass is m2 > 420 GeV/c2, compared with the previous limit of

406 GeV/c2 [100] (402 GeV/c2 with the modern value m1 = 80.423 GeV/c2). This

new limit is also significantly stronger than the combined limit from many nuclear

beta decay experiments summarized in [103].

A measurement of the Michel parameter ρ provides a constraint on the mixing

angle, which does not depend on the mass. The best limit, established by TWIST,

is |ζ| < 0.030 at 90% confidence level [98]. There is also a very tight constraint

on mixing angle from superallowed nuclear beta decays [105], that is dependent on
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Figure 10.1: 90% CL constraints on manifest left-right symmetric models. The
excluded region is low mass and large |ζ|. Bold line: TWIST lower limit on Pµξ.
Dashed line: dedicated search for right-handed currents in muon decay [100]. Dash-
dotted line: one-sided limit Pµξ > 0.991867 (90% CL) from a direct measurement
of Pµξ [104]. Dotted line: combined nuclear beta decay data [103].

nuclear theory and other inputs. When PDG recommended values [87] are used for

elements of the CKM matrix, it yields a non-zero result ζ = 0.00176 ± 0.00074.

Limits from direct searches at colliders do not constrain ζ, but provide better

constraints on the mass. The strongest combined result is m2 > 786 GeV/c2 at

95% confidence level [106]. (At 95% CL, 0.99523 < Pµξ ≤ ξ < 1.00472, and m2 >

402 GeV/c2 from TWIST.) Collider results need less restrictive assumptions about

mass of right-handed neutrino than low-energy tests, but depend on the assumed

decay channels of the right-handed boson.

Under the assumption of manifest left-right symmetry a yet stronger limit of

m2 > 1.6 TeV/c2 can be extracted from the KL −KS mass difference ∆mK [107].

Manifest and pseudo-manifest left-right symmetric models have severe difficulties

explaining experimental data (see e.g. [109]), therefore a more general case has to be

considered. The number of parameters become much larger in generalized models,

since no statement about the right-handed CKM matrix can be made. Many limits

become significantly weaker for generalized left-right symmetric models, and may

cease to be useful if fine-tuning is allowed. This is true for constraints from ∆mK
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Figure 10.2: A comparison of model dependence of muon decay and collider limits
on left-right symmetric models. Solid lines: 95% CL limits on manifest left-right
symmetry from TWIST (curved line) and D0 [108] (vertical). Dashed lines: TWIST
exclusion for arbitrary CP violation and right-handed CKM matrices (curved), D0
mass limit for a specific set of parameters of non-manifest model (vertical).

[110, 109], nuclear beta decays (Fig. 12 in [103]), and collider results [111]. Muon

decay data, on the other hand, have very little sensitivity to assumptions about the

unknown right-handed sector. An illustration of this statement is given on Fig. 10.2.

The two vertical lines represent 95% D0 limit under assumption of manifest sym-

metry (solid), and a significantly weaker one obtained assuming a different specific

set of model parameters (dashed) [108]. To make a direct comparison to the quoted

D0 results, the TWIST limit from Fig. 10.1 was converted to 95% CL, and shown as

the solid curved line. The dashed curved line on Fig. 10.2 shows 95% CL excluded

region from TWIST for the most general case, with an arbitrary fine tuning allowed.

If a point is outside of the dashed curve, it is excluded for any possible combina-

tion of the parameters with at least 95% confidence level. (Of course, right-handed

neutrinos still have to be light.)

A very strong limit on the mass of the second W boson, of the order of 3 TeV/c2,

can be obtained from big bang nucleosynthesis [112]. They require right-handed

neutrinos to be lighter than about 1 MeV/c2, and depend on assumptions about

cosmological models that are outside of the scope of particle physics.
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Among tests of left-right symmetric models done within the context of particle

physics, muon decay provides better mass limits than nuclear (and neutron) de-

cay data. These limits are still weaker than limits from direct collider searches.

Unlike direct collider searches, muon decay constrains the mixing angle as well as

the mass parameter. But muon decay constraints are conditional on the lightness

of right-handed neutrinos. On the other hand, collider results are obtained using

assumptions of manifest or pseudo-manifest symmetry. An important advantage of

muon decay results is their weak dependence on unknown parameters of more gen-

eral left-right symmetric models, making them complementary to data from other

sources. A discussion on complementarity of different observables for generalized

left-right symmetric models can be found in [103]. Muon decay results are also not

subject to complications of QCD and nuclear theory.

10.4 Limit on non-local tensor interactions

Using (1.24) and a 90% confidence level lower limit for δ from (10.1), we obtain

|gT
RR| < 0.024, 90% confidence level. (10.11)

Since the proposed value is gT
RR ≈ 0.013 (Section 1.3.3), this limit does not constrain

the model significantly.
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Appendix A

TWIST coordinate system
and kinematic variables

The origin of the TWIST coordinate system is in the center of the muon stopping

target. The Z axis is along the detector stack, in the direction of the muon beam

(see Fig. 2.3). The Y axis points upwards, and the X axis completes a right-handed

XY Z coordinate system. The U and V axes are obtained from the X and Y

axes, correspondingly, by a +45◦ rotation about the Z axis. TWIST wire chambers

measure U and V coordinates, not X and Y , see chapter 2.

The angle θ of a track is defined by cos(θ) = pz/p, where p = |~p| is the momentum

of the particle, and pz is the projection of the momentum on the Z axes. The

transverse momentum, pt, is defined as p2
t = p2 − p2

z.

The “upstream” and “downstream” directions are defined relative to the muon

beam, that is cos(θ) < 0 for an upstream decay, cos(θ) > 0 for a downstream decay.

Upstream part of the detector is the one seen by an incoming muon before it comes

to rest in the central stopping target.
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Appendix B

Optimization of fit range
for the energy calibration
procedure

The energy calibration procedure attempts to compensate for differences between

data and Monte-Carlo that affect the position of the end point. To accomplish that

task, the calibration results should not be sensitive to these same differences. This

can be re-stated as a requirement that the fit should be able to recoup a change in

β, αu, αd. So the optimization criteria is not the minimization of a fit bias, but the

minimization of any dependence of a bias on the shape of the end point region.

To quantify the ability of the fit to recoup a shape change, a data spectrum

was distorted by applying the energy calibration transformation (6.10) with e.g.

βshift = 25 keV/c. The energy calibration procedure was run on both the original

and the distorted spectrum, and the changes

∆β = βshifted − βraw − βshift, (B.1)

∆αu = αshifted
u − αraw

u , (B.2)

∆αd = αshifted
d − αraw

d , (B.3)

∆σ0 = σshifted
0 − σraw

0 , (B.4)

were computed. These changes characterize stabilities of different parameters to

the given shape change. To obtain more reliable estimates, several values of β shift,

from −75 keV/c to +75 keV/c in steps of 25 keV/c, were used, and RMSes of ∆β,

∆αu, ∆αd, ∆σ computed. RMSes of ∆αsum and ∆αdiff were also obtained from

the same data. Similar scans were done for αu and αd, to quantify stabilities of

fit results under different shape changes. A “variation” of σ0 was accomplished by
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smearing the reconstructed momentum with a Gaussian, whose width was defined

following (6.7) as σshift
0 /| sin(θ)|. For that scan, ∆σ0 was defined through a quadratic

difference ∆σ0 =
√

(σshifted
0 )2 − (σshift

0 )2 − σraw
0 . Therefore, for a fixed choice of fit

range, we had 24 numbers, characterizing stabilities of 6 fit results (β, αu, αd, σ0,

αsum, αdiff) under 4 different shape changes (the scans of β shift, αshift
u , αshift

d , σshift
0 ).

Three versions of choosing the momentum range were tested:

pedge(θ) − c1 < p < pedge(θ) + c2, (B.5)

pedge(θ) − c1 < p < pedge(θ) + s2σ(θ), (B.6)

pedge(θ) − s1σ(θ) < p < pedge(θ) + s2σ(θ). (B.7)

where ci are constant momentum intervals and si are constant multipliers.

For each of the schemes (B.5)–(B.7) a 2-dimensional scan of the parameters ci

and/or si was performed, with c1 = 0 . . . 2.5 MeV/c in 0.25 MeV/c steps, c2 =

0 . . . 0.5 MeV/c in 0.05 MeV/c steps, s1 = 0 . . . 5 in steps of 0.5, and s2 = 0 . . . 5 in

steps of 0.5. At each scan point, the 24 “stability” numbers were computed, so that

a scan yielded 24 2-dimensional “maps” of the fit range parameter space.

These 24 maps were examined by eye, and a “compromise” region, approximately

minimizing all of the stability parameters, was identified. Then the best regions

found for (B.5)–(B.7) were compared to each other. The best results were given by

the scheme (B.6), with c1 = 0.75 MeV/c and s2 = 0.5. So these were the settings

used for the energy calibration during production fitting.
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Appendix C

The spectrum expansion

Integrating the response function K from (7.1) over x in bin i of the spectrum

histogram, we get a “binned” response function Ki(x
′), that is, the probability to

get the reconstructed event in bin i. For a dataset with N ′ true decays, the expected

number of events reconstructed in bin i is:

Ni(λ) = Bi +N ′

∫

Ω0

Ki(x
′) f(x′;λ) dx′ (C.1)

where Bi is the background, f(x′;λ) is the true distribution of decays, and Ω0 is the

whole kinematically allowed phase space. Often we have an analytical expression

for the theoretical distribution representing f only up to a normalization factor:

f(x′;λ) = A(λ)F (x′;λ),

∫

Ω0

f(x′;λ) dx′ ≡ 1, (C.2)

we know F but do not know A. (Of course A can be calculated numerically.) This is

true for muon decay: (1.3) gives the differential decay rate F , but not the probability

distribution f .

TWIST measures the shape of the spectrum. We can get rid of the absolute

count by normalizing Ni to the total number of reconstructed events in fiducial

volume Ω:

ni(λ) = Ni(λ)/N(λ), where N(λ) =
∑

Ω

Ni(λ). (C.3)

A change in the parameters λ modifies the spectrum shape as

ni(λ+ ∆λ) − ni(λ) = ∆λ
1

N

∂Ni

∂λ
− ni(λ)∆λ

∑

Ω

1

N

∂Ni

∂λ
+ O(∆λ2) (C.4)
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Using (C.1)–(C.3) we can express the derivative on the right hand side as:

∆λ
1

N

∂Ni

∂λ
=
N ′

N
A(λ)∆λ

∫

Ω0

Ki(x
′)
∂F (x′;λ)

∂λ
dx′

+
Ni

N
∆λ

1

A(λ)

∂A

∂λ
− Bi

N
∆λ

1

A(λ)

∂A

∂λ
+ O(∆λ2).

(C.5)

Also,

∆λ
1

A(λ)

∂A

∂λ
= −A(λ)∆λ

∫

Ω0

∂F (x′;λ)

∂λ
dx′. (C.6)

and

A−1(λ) =

∫

Ω0

F (x′;λ) dx′. (C.7)

Analytical expressions for F and ∂F/∂λ are known, so there are available many

ways to calculate integrals (C.6)–(C.7). The integral in (C.5) contains an unknown

response function K, and therefore must be evaluated with Monte-Carlo. It is

convenient to calculate (C.6)–(C.7) by Monte-Carlo integration as well.

Doing the integrals

A definite integral of a bounded non-negative function g(x′) can be evaluated us-

ing the acceptance-rejection method: choose a Ymax ≥ maxx′∈Ω0
g(x′) and sample

Nthrown points {x′, y} from a uniform distribution on Ω0 × [0, Ymax]. Call a point

accepted if y < g(x′). Then

∫

Ω0

g(x′) dx′ ≈ Nacc

Nthrown
Ymax

∫

Ω0

dx′. (C.8)

where Nacc is the count of accepted points. This recipe is applicable for evaluat-

ing (C.7). An integral for a more general g(x′) can be written

∫

Ω0

g(x′) dx′ =

∫

Ω0

g+(x′) dx′ −
∫

Ω0

g−(x′) dx′ (C.9)

where g+ and g− are non-negative functions:

g+(x′) =

{

g(x′) if g(x′) ≥ 0,

0 otherwise,
g−(x′) =

{

|g(x′)| if g(x′) < 0,

0 otherwise.
(C.10)
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Then from (C.8)

∫

Ω0

g(x′) dx′ ≈ N+
acc −N−

acc

Nthrown
Ymax

∫

Ω0

dx′, (C.11)

where

Ymax ≥ max
x′∈Ω0

|g(x′)|, (C.12)

y < g+(x′) for N+
acc, (C.13)

y < g−(x′) for N−
acc. (C.14)

The integral in (C.6) can be calculated in this way.

To evaluate the integral in (C.5) we can use the following procedure: with the

“generating function” g(x′) = ∂F (x′;λ)/∂λ sample {x′, y} from a uniform distri-

bution as before. For every point accepted according to (C.13) or (C.14) use x ′ to

define the kinematics of an event in GEANT, simulate and reconstruct the event. If

the event passed the whole analysis chain and landed in bin i, count it as N+
i [∂F

∂λ
]

or N−
i [∂F

∂λ
]. Then

∫

Ω0

Ki(x
′)
∂F (x′;λ)

∂λ
dx′ =

N+
i [∂F

∂λ
] −N−

i [∂F
∂λ

]

Nthrown[
∂F
∂λ

]
Ymax[

∂F
∂λ

]

∫

Ω0

dx′ (C.15)

and

∆λ
1

N

∂Ni

∂λ
= ∆λ

Ymax[
∂F
∂λ

]

Ymax[F ]

Nthrown[F ]

N [F ]

×
{

N+
i [∂F

∂λ
] −N−

i [∂F
∂λ

]

Nthrown[∂F
∂λ

]
− Ni[F ] −Bi

N ′[F ]

N ′+[∂F
∂λ

] −N ′−[∂F
∂λ

]

Nthrown[∂F
∂λ

]

}

+ O(∆λ2). (C.16)

N ′ here, as before, denotes the number of “true” decays, that is, those accepted

in generation but not necessarily passed through the analysis. The argument in

the square brackets indicates which generating function was involved. For example,

Ni[F ] ≡ Ni, and N ′[F ] ≡ N ′ from (C.1). The numbers N , Ni, N
±
i , N ′ , N ′± are to

be understood as statistical expectations.

Substituting (C.16) into (C.4) and introducing

Ni[
∂F
∂λ

] = N+
i [∂F

∂λ
] −N−

i [∂F
∂λ

], N ′[∂F
∂λ

] = N ′+[∂F
∂λ

] −N ′−[∂F
∂λ

], (C.17)
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we finally get

ni(λ+ ∆λ) − ni(λ) = ∆λ
Ymax[

∂F
∂λ

]

Ymax[F ]

Nthrown[F ]

N [F ]

×
{

Ni[
∂F
∂λ

]

Nthrown[∂F
∂λ

]
+

Bi

N ′[F ]

N ′[∂F
∂λ

]

Nthrown[∂F
∂λ

]
− Ni[F ]

N [F ]

N [∂F
∂λ

]

Nthrown[∂F
∂λ

]

−Ni[F ]

N [F ]

B

N ′[F ]

N ′[∂F
∂λ

]

Nthrown[∂F
∂λ

]

}

+ O(∆λ2), (C.18)

where B =
∑

i∈ΩBi. Introducing the efficiency

E(λ) = Ymax[F ]
N [F ]

Nthrown[F ]
(C.19)

of the mapping of Ω0 × [0, Ymax] into Ω, the integral of ∂F/∂λ

D(λ) = Ymax[
∂F
∂λ

]
N ′[∂F

∂λ
]

Nthrown[∂F
∂λ

]
, (C.20)

and normalized spectra

νi(λ) = Ymax[
∂F
∂λ

]
Ni[

∂F
∂λ

]

Nthrown[∂F
∂λ

]
, βi =

Bi

N ′[F ]
, (C.21)

we can re-write (C.18) as

ni(λ+ ∆λ) =

[

1 −
m

∑

α=1

∆λα E−1(να + βDα)

]

ni(λ)

+

m
∑

α=1

∆λα E−1(να
i + βiDα) + O(∆λ2). (C.22)

Here the index α = 1, . . . ,m numbering the components of λ is shown explicitly,

β =
∑

i∈Ω βi, and να =
∑

i∈Ω ν
α
i .

Equation (C.22) shows that a reconstructed spectrum for parameter values λ+

∆λ can be represented as a linear combination of reconstructed spectra with different

values of parameters λ. The coefficients in front of the “derivative” terms in the

linear combination are proportional to the deviations of parameters ∆λ.
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Appendix D

Conversion formulas for the
Pµξδ parametrization

Here are the formulas for conversion between the Pµξ, δ, covariance matrix V , and

z = Pµξ|Pµξδ, w = Pµξδ, covariance matrix U , parametrizations.

1) Pµξ, δ −→ Pµξδ

∆z = ∆Pµξ

∆w = (Pµξ0 + ∆Pµξ)(δ0 + ∆δ) − Pµξ0δ0

Uij = Vij , i, j 6= w

Uiw = (δ0 + ∆δ)Viξ + (Pµξ0 + ∆Pµξ)Viδ, i 6= w

Uww = (δ0 + ∆δ)2 Vξξ + 2(Pµξ0 + ∆Pµξ)(δ0 + ∆δ)Vξδ + (Pµξ0 + ∆Pµξ)
2 Vδδ

2) Pµξδ −→ Pµξ, δ

∆Pµξ = ∆z

∆δ = (∆w − δ0∆z)/(Pµξ0 + ∆z)

Vij = Uij, i, j 6= δ

Viδ = −Pµξ0δ0 + ∆w

(Pµξ0 + ∆z)2
Uiz +

1

Pµξ0 + ∆z
Uiw, i 6= δ

Vδδ =
(Pµξ0δ0 + ∆w)2

(Pµξ0 + ∆z)4
Uzz − 2

Pµξ0δ0 + ∆w

(Pµξ0 + ∆z)3
Uzw +

1

(Pµξ0 + ∆z)2
Uww

The covariance matrix conversion is approximate, see e.g. [95] for details.
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